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Abstract

Gas-Vapor Bubble Dynamics
in Therapeutic Ultrasound

Wayne Kreider

Chair of the Supervisory Committee:
Research Professor Lawrence A. Crum
Department of Bioengineering

In applications of therapeutic ultrasound such as shock wave lithotripsy (SWL) and high-
intensity focused ultrasound (HIFU), cavitation and the associated bubble dynamics play
an important role. Moreover, bubble dynamics have not been fully studied in the context
of the large acoustic excitations, elevated temperatures, and gas-saturated conditions that
characterize therapeutic ultrasound treatments. Because acoustic cavitation has been typ-
ically explored in the context of bubbles containing only non-condensable gases, relatively
little is understood about the role of vapor under relevant conditions. Accordingly, the
primary goal of this effort is to elucidate the role of vapor in the dynamics of gas-vapor
bubbles. Given the large acoustic excitations of SWL and HIFU, the dynamics of violent

inertial collapses are of particular interest.

To investigate the impact of vapor, both numerical modeling and experiments were uti-
lized. The model was developed for a single, spherical bubble and was designed to capture
behavior associated with the collapse and rebound of a gas-vapor bubble. Numerical difficul-
ties in modeling violent collapses were addressed by using scaling principles to approximate
the spatial gradients used for estimating heat and mass transport in both liquid and gaseous
phases. Model predictions demonstrate thermal effects from vapor transport through the
coupling of the saturated vapor pressure to temperature changes in the surrounding lig-

uid. Also, the model suggests that vapor transport affects the dynamics mechanically when



vapor is diffusively trapped in the bubble interior. Moreover, predictions imply that the
collapses of millimeter-sized lithotripsy bubbles are principally governed by the aformen-
tioned mechanical effects. To test the model, collapses and rebounds of lithotripsy bubbles
were experimentally observed using high-speed photography. Although bubble asymme-
tries added scatter to the data, experimental observations agree very well with the range
of model predictions obtained with feasible length scales for mass diffusion in the bubble
interior. Statistically significant variations observed in the experimental data imply that
both temperature and dissolved gas concentration in the surrounding liquid affect mass dif-
fusion inside the bubble. To complement experimental observations, bubble clusters in an
incompressible liquid were modeled; simulations yielded insights related to bubble collapse

times.
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Chapter 1

INTRODUCTION

Therapeutic ultrasound comprises surgical techniques that use acoustic waves to effect
changes in tissue. The therapeutic modalities of primary interest for this work are shock-
wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). In both modalities,
acoustic energy is generated at a site remote from the treatment location and then focused
to achieve very high intensities in a precise treatment volume. In SWL, the acoustic en-
ergy is delivered in a series of discrete shock waves that are used to break renal stones
mechanically. For HIFU, acoustic waves are delivered to the treatment site more or less
continuously, thereby heating the targeted tissue as the acoustic energy is continuously
absorbed. Schematic illustrations of SWL and HIFU are provided in Figure 1.1.

Physical aspects shared by SWL and HIFU include the nonlinear propagation and focus-
ing of acoustic waves, dissipation associated with this propagation, and cavitation.® In this
context, the term ‘cavitation’ is considered to indicate the dynamic interaction of an acous-
tic field with gas bodies (é.e., bubbles). Because therapeutic ultrasound typically involves
large negative acoustic pressures, it is possible to excite very small gas bubbles. Moreover,
observations of bubble activity during treatments are consistent with the literature related
to decompression sickness in that sub-micron sized bubble nuclei are likely initiated and
resolved in tissue under normal physiological conditions.?

Broadly, bubble dynamics are the focus of this effort. More specifically, cavitation
behavior and the attendant thermodynamics are investigated under the intense acoustic
fields characteristic of therapeutic ultrasound. In such acoustic fields, bubbles may grow
to many times their original volume before collapsing violently. During such collapses, the
inertia of the surrounding liquid controls the bubble motion; as this liquid mass flows quickly

toward the bubble’s geometric center, very high pressures and temperatures are produced
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Figure 1.1. Schematic representations of the geometry and focal acoustics of (a) shock-wave
lithotripsy and (b) high-intensity focused ultrasound.

inside the bubble. Because such inertial collapses (also called Rayleigh collapses®) represent
a fundamental element of cavitation behavior in therapeutic ultrasound, they are the central
topic of this dissertation. Moreover, because bubbles exposed to a lithotripter shock wave
exemplify a pertinent and accessible subject for studying inertial cavitation, a primary
focus of this dissertation comprises lithotripsy bubbles. Despite a particular focus here on
individual bubble collapses and lithotripsy, the underlying bubble dynamics also apply to
HIFU. For HIFU, the relevance of heat and vapor transport is readily apparent in that the

therapeutic process involves rapid heating.

To provide a general context for this research, acoustics and bubbles in medical applica-
tions are discussed briefly below. Out of this context, further motivation for understanding

bubble dynamics is identified and relevant literature are reviewed. Finally, the explicit scope

of this effort is described.



1.1 General Background

1.1.1 Acoustics in Medicine

Many applications for acoustics in medicine have been developed in recent decades. Perhaps
the most well known application is ultrasound (US) imaging. Other imaging techniques
such as elastography and vibro-acoustography are also being developed to take advantage
of specific acoustic properties. As discussed above, ultrasound can be used for therapeutic
purposes in addition to diagnostics. Such therapies include SWL for the comminution
of renal calculi and HIFU for treatment of tumors, hemostasis and possibly other surgical
applications.* As reviewed by Bailey et al.,* these acoustic therapies involve various physical
mechanisms that produce biological effects, including both localized heating and mechanical
forces related to cavitation.

In considering SWL and HIFU, note the variety of treatment strategies denoted by
these terms. In SWL, the goal of treatment is always to generate high mechanical stresses
in renal stones, thereby breaking them into smaller pieces. These stresses may be induced
by either the incident shock wave, the resulting cavitation activity, or both. In contrast,
HIFU treatments may involve the utilization of various physical mechanisms to produce
different physical and biological effects. For instance, treatment of tumors with HIFU relies
mainly upon the generation of regions of thermal necrosis within the tumor.® However, other
treatments have been designed to utilize only mechanical effects associated with cavitation to
disrupt and homogenize tissue.®” Meanwhile, using HIFU for hemostasis may involve some
combination of thermal and mechanical effects.®® Given the broad range of therapeutic
medical applications, many of which explicitly seek either to utilize or avoid cavitation, it

is clearly desirable to obtain a fundamental understanding of the related bubble dynamics.

1.1.2  Cavitation in Therapeutic Ultrasound

Bubbles in therapeutic ultrasound are of particular interest because they provide a very
efficient means for reflecting acoustic energy and/or localizing mechanical effects. Depending
upon the application, the physical interaction of bubbles with an intense sound field can

be either beneficial or harmful. Below, both positive and negative effects of cavitation are



cited for illustrative purposes. Altogether, these examples demonstrate the practical utility
of understanding how cavitation bubbles can reflect or concentrate mechanical and thermal
energy.

Starting with undesirable effects, note that cavitation has been linked to renal injury in
SWL.*%12 Although the specific physical mechanisms that cause the observed vascular dam-
age remain unclear, the collective data seem to indicate that cavitation plays a role. Aside
from their association with unintended tissue injury, bubbles have also been shown to signif-
icantly distort the acoustic field delivered during both lithotripsy and HIFU treatments. 3%
Because the field distortions are typically unpredictable, such effects are inherently trou-
blesome. In SWL, a slower rate of shock-wave delivery produces fewer bubbles, thereby
minimizing distortion of the focal waveform and enabling more efficient treatments.

While acoustic reflection and energy localization can be harmful, these same physical
characteristics of bubbles can also be exploited. For instance, the reflective characteris-
tics of bubbles may be utilized to assist in the targeting and/or dosimetry of HIFU with

ultrasound imaging. %"

In addition to diagnostic functions, bubbles may also be utilized
to contribute to the therapeutic effect. Specific examples include the following: improve-
ment of gene transfection through the piercing of cell membranes,'® enhancement of local

21,22

heating for thermal therapies,®*° erosion of kidney stones, and targeted erosion of tis-

sue. 5?8

In further illustration of the beneficial role of bubbles, contrast agent microbubbles
originally developed for ultrasound imaging are increasingly being adopted for therapeutic
purposes. ®2*

Given that bubbles play a significant role in therapeutic ultrasound, understanding the
fundamental dynamics of bubbles excited by high-amplitude acoustic pressures remains a
topic of significant research interest. Although cavitation behavior is very diverse across the
aforementioned spectrum of therapeutic applications, a common aspect is the fundamental
manner in which bubbles localize the mechanical energy of a strong sound field. It has been
demonstrated that strongly excited bubbles radiate large acoustic pressures®® and induce
thermal effects in the surrounding medium.?®?® These effects and others are dictated by

the bubble motion and its implicit thermodynamics. Further demonstrating the intimate

coupling between cavitation activity and the local thermodynamic state of the surroundings,



recent work on nonlinear heating mechanisms in HIFU has demonstrated that bubbles can
be excited to superheated temperatures within milliseconds.?”

In the above discussion of the relevance of bubble activity during therapeutic ultra-
sound, it is apparent that the thermodynamics associated with bubble oscillations are of
direct import. Thus, understanding the pertinent dynamics requires consideration of the
transport of heat and mass to/from the bubble (including both vapor and non-condensable
gases). While a wealth of literature exists on the dynamics of gas and vapor bubbles, the
fundamental physics under conditions pertinent to SWL and HIFU have not been fully
explored. Although pertinent fluid mechanics equations can be formulated in a straightfor-
ward manner to model these conditions, direct numerical computations remain intractable
when large acoustic excitations are present. Moreover, careful experiments to elucidate
basic mechanisms under such extreme conditions are difficult. Further discussion of the

relevant literature on bubbles dynamics is continued in the next section.

1.2 Literature Review

In the following sections, the research literature are reviewed with a particular focus on
bubble modeling. Because the most useful starting point in developing a new model is the
most recent literature, the subsequent review focuses largely on more recent work. Given
the breadth of historical work on cavitation and bubble dynamics, the review contained in
this section is certainly not comprehensive. However, additional literature can be found in

the references of papers cited below.

1.2.1 Bubble Modeling Approaches

Given the complexity associated with the general problem of acoustic cavitation, it is in-
sightful to first discuss methods that have been developed to model and understand bubble
dynamics. For the most general case of cavitation, conservation of mass, momentum, and
energy must be enforced in both liquid and gaseous phases. Moreover, liquid and gas re-
gions must be considered to share a moving boundary across which heat and mass are
exchanged. The most complete models require solution of the governing partial differential

equations (PDEs) in both time and space. However, owing to the coupling of dynamics



across different temporal and spatial scales,?® direct numerical solution of the full PDEs
can be problematic. Hence, most models in the literature address bubble dynamics under
simplifying assumptions.

A common assumption used to study bubble dynamics is geometric symmetry. If a single
bubble remains spherical, equations of continuity and momentum for an incompressible
liquid may be integrated to yield an ordinary differential equation (ODE) for the bubble
radius as a function of time.3? To close such a model formulation, it is then necessary
only to specify how the pressure inside the bubble varies with its radius. Although liquid
compressibility and other more complicated phenomena are often included, any such model
that describes the underlying radial motion with a single ODE may be generically termed
a ‘Rayleigh-Plesset’ model. As discussed further in Section 1.2.2 below, Rayleigh-Plesset
models can successfully capture the basic features of very violent collapses despite their
simplicity. Accordingly, individual spherical bubbles are the primary focus of the following

discussion of the literature.

1.2.2  Modeling Limitations

As already mentioned, direct numerical simulation of the governing PDEs for bubble motion
remains numerically intractable in many instances. Although several groups have success-
fully implemented direct simulations for inertial collapses,**3? difficulties remain for many
of the conditions applicable to therapeutic ultrasound. More specifically, very steep spatial
gradients develop during violent collapses. As noted by Preston,®* the presence of such
steep gradients requires the use of extremely small time steps to maintain stability during
numerical integration. Ultimately, these calculations tend to become computationally in-
tractable when micron-sized bubbles are excited by negative pressures on the order of a few
bars.*? Given that SWL and HIFU typically involve negative pressures on the order of tens
of bars, direct simulations are generally not feasible.

Complementing the more complicated models and their numerical limitations, simpler
models can be used to elucidate basic behaviors. As demonstrated by Lin et al.,3® Rayleigh-

Plesset models that assume a uniform pressure inside the bubble can capture the basic



features of the dynamics. Accordingly, such reduced-order models have been successfully

used to investigate the inertial collapses of both sonoluminescence bubbles3*2* and SWL

bubbles. 3¢

1.2.8 Bubble Dynamics in Therapeutic Ultrasound

The brief description of modeling approaches and limitations provided above is applicable
to bubble dynamics in general. In this subsection, the relevant literature are explicitly
related to understanding cavitation in therapeutic ultrasound. First, single-bubble sonolu-
minescence is considered. The intense interest in sonoluminescence during the 1990s led to
many efforts for modeling violent collapses and experimentally testing these models. As a
result, this literature is relevant because it represents a unique body of knowledge regarding
the physics of inertial collapses. Similarly, the collapses of laser-induced bubbles have been
studied carefully with both theory and experiments. Two relevant papers on laser-induced
bubbles are discussed next. Finally, efforts to understand bubble dynamics under both
HIFU and SWL conditions are reviewed and an overarching summary of the literature is

provided.

Single-Bubble Sonoluminescence

In the study of single-bubble sonoluminescence, typical conditions involve a 5 um bubble
driven with acoustic pressures of about 1 bar and acoustic frequencies near 20 kHz. The
5 pum bubble expands to roughly ten times its initial radius and collapses violently during
each acoustic cycle. High temperatures generated during collapse lead to the characteristic
light emission. Because light emission can be physically related to temperature, models
developed to understand this phenomenon evolved to address the thermodynamics of col-
lapse.®™*° Ultimately, these models included compressibility of the liquid and gas phases,
heat transport to/from the bubble, mass diffusion, non-equilibrium evaporation and con-
densation of water at the liquid-gas interface, and chemical reactions in the gas phase.
Later sonoluminescence models became sophisticated enough to explain experimental

observations. Perhaps the most comprehensive model was implemented by Storey and Sz-



eri.*® Notably, they were able to capture heat transfer to/from the liquid phase of a violently
collapsing bubble by using a boundary-layer approximation to the energy equation in the

! a key component of the model

liquid. As described in more detail by Vuong and Szeri,?
formulation was the inclusion of pressure inhomogeneities in the gas. Such consideration of
shock waves in the gas phase enabled formulation of a numerically stable model for violent
bubble collapses in the presence of diffusive transport. Toegel and Lohse*® also included
pressure inhomogeneities in their model, though they neglected the energy equation in the
liquid. Moreover, they utilized reduced-order models for diffusive transport. Ultimately,

this model was able to effectively predict the behavior of sonoluminescence bubbles across

a range of experimental test conditions.*

As models for single-bubble sonoluminescence were refined to explain experimental ob-
servations, a very relevant general conclusion was reached. Although the specific numerical
results of a given model depended upon details such as the equation of state in the gas
phase and the uniformity of pressure inside the bubble, less complicated model formula-
tions were able to capture the qualitative features of bubble collapse.***® Moreover, several
successful reduced-order models were presented.?*3*# A key aspect of these reduced-order
models involved estimation of heat and mass transport behavior based upon characteristic
length and time scales of the bubble motion. While Yasui*! implicitly defined length scales
by assuming temperature distributions in the surrounding liquid, others explicitly defined

time and length scales for heat and mass transfer in the gas phase, 3438540

Although the later models for single-bubble sonoluminescence do not consider temper-
ature changes in the surrounding liquid, the approach of defining explicit length and time
scales in a reduced-order model provides an appealing framework. Even though a more
sophisticated approach that includes heat transfer in the liquid was developed by Szeri

and others, 33

such an approach poses significant computational challenges. Hence, in the
context of the range of acoustic and physiological conditions pertinent to HIFU and SWL,
reduced-order models hold appeal for investigating the physical mechanisms that are most

relevant to bubble dynamics in therapeutic ultrasound.



Collapse and Rebound of Laser-Induced Bubbles

If a pulsed laser is focused to a point in water, optical breakdown can be induced. Al-
though rather complicated physics describe the optical breakdown and subsequent plasma
recombination, these processes can ultimately produce a spherical bubble that grows to a
maximum size on the order of millimeters before collapsing.**** Such laser-induced bubbles
have proven useful for studying the collapses of bubbles near solid boundaries because the

location of the bubble can be precisely controlled with the laser.

Vogel and Lauterborn studied the collapse and rebound of laser-induced bubbles with
maximum radii between 1 and 5 mm.*** In particular, they analyzed these collapses from
a macroscopic perspective, using the maximum radius attained before and after collapse
to assess the total amount of energy lost. Using a combination of acoustical and optical
techniques, they also measured the pressures radiated by collapsing bubbles. For spherical
collapses, it was found that bubbles lose about 84% of their total energy during collapse. In
addition, pressure measurements indicated that about 73% of the lost energy was radiated
acoustically. Overall, this work provides excellent insight into the mechanisms for energy
conversion in the collapse of millimeter-sized bubbles. However, it does not elucidate how
these mechanisms might be affected by collapses under different conditions that may better

represent therapeutic ultrasound.

In more recent work, the collapses and rebounds of laser-induced bubbles were investi-
gated analytically and experimentally.*? The model proposed in this work utilizes a unique
formulation, but essentially includes the same physical characteristics described above for
models of sonoluminescence bubbles. It is noteworthy that this model was successfully
implemented to simulate the very violent collapses of millimeter-sized bubbles. A key con-
clusion of this work was that even though the bubble may initially be composed mainly of
water vapor, the presence of a small amount of non-condensable gas greatly affected the
resulting rebounds. Despite this noted sensitivity, the authors argue that the diffusion of
dissolved gases into the bubble during its initial expansion are not sufficient to significantly
affect the model predictions. Overall, this work represents an extension of models proposed

for sonoluminescence to the inertial collapses of larger bubbles. However, key aspects of the
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model as it might be applied to SWL or HIFU were not tested experimentally—e.g., sensi-

tivity to dissolved gases in the surrounding liquid as well as thermal transport behaviors.

HIFU Bubbles

In the context of this dissertation, HIFU describes a focused acoustic field with peak rarefac-
tional pressures typically in the range of 1-15 MPa and acoustic frequencies from roughly
0.5-10 MHz. Although many researchers have reported experimental results that describe
evidence of cavitation during application of HIFU, relatively few have explicitly explored
the physical mechanisms that characterize the bubble activity. For example, acquired hy-
drophone measurements imply the presence of inertial cavitation under in vivo, ex vivo, and
in vitro conditions during HIFU.%'%* However, characterization of the bubble motions as
inertial does not elucidate the mechanisms that govern the dynamics. To illustrate, iner-
tial collapses can be observed both in vapor bubbles and in gas bubbles, even though the

underlying mechanics of these types of bubbles are quite different.

An active area of HIFU research that does include mechanistic modeling involves bubble-
mediated heating. Holt and Roy'® experimentally discovered a correlation between cavita-
tion activity and enhanced heating during HIFU. They attributed this behavior to acoustic
radiation and viscous dissipation from oscillating bubbles. If controllable, this phenomenon
suggests a means for improving HIFU treatment protocols; hence efforts to optimize and
control bubble-mediated heating have continued.?® As a part of this work, a model was
developed to identify relevant bubble sizes by estimating thresholds at which shape insta-
bilities and rectified diffusion would occur during HIFU.*¢ However, the bubble model used
in this work did not account for phase change and its attendant thermal effects. Because
vapor was demonstrated to be important in other inertially collapsing bubbles, it is unclear
how well such a model can capture the essential behavior of HIFU bubbles.

In related research, another group has utilized a more complete model that accounts for
vapor dynamics to investigate therapeutic applications. Matsumoto et al.?® analyzed single
bubbles as well as bubble clouds and assessed the potential of bubbles to transduce energy

from the acoustic excitation into thermal energy. They found that thermal transport from
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the bubble (i.e., both thermal conduction and the latent heat of vapor condensation) pro-
vides as much energy to the surrounding liquid as acoustic radiation and viscous dissipation.
Though this work provides mechanistic insights, only modest excitation amplitudes on the
order of 0.1 MPa were considered. From personal communication with Shin Yoshizawa,
higher excitation amplitudes were not considered due to numerical difficulties similar to

those described above in Section 1.2.2.

Lithotripsy Bubbles

In lithotripsy, cavitation is believed to contribute to both tissue injury!? and stone frac-
ture.?’ Accordingly, cavitation during lithotripsy remains an active area of research. For
convenience, this research is loosely categorized here according to its focus on either single
bubbles or bubble clusters. Because the research on bubble clusters typically examines the
effects of bubble interactions rather than the explicit thermodynamics of bubble motion, it

is not discussed further here.

As for single bubbles, some recent work has considered the effects of asymmetry on vi-
olent collapses in SWL. Johnsen et al.*” and Sankin et al.*® have looked at shock-induced
bubble collapses. In research on other asymmetric effects, the dynamics of bubbles con-
strained by vessels have been explored.***° Although these studies provide insight into real
collapses that are not ideally symmetric, they focus only on the shape of the liquid-gas
interface. Because the models used by Johnsen et al.*” and by Qin et al.®® do not include
the details of heat and mass transport as described in Section 1.2.3, they cannot provide

additional insight thereof.

Lastly, several modeling and experimental efforts have sought to characterize the spher-
ical dynamics of individual bubbles exposed to a lithotripter shock wave. Church® in-
troduced a numerical approach for calculating the diffusion of non-condensable gases into
lithotripsy bubbles. Later, Sapozhnikov et al.'® used this same approach to explore the
effects of shock repetition rate on bubbles. Calculations along with experimental mea-
surements suggested that gas diffusion into micron-sized gas bubbles excited by a single

lithotripter shock wave can produce gas bubbles with equilibrium radii on the order of tens



12

of microns.

In addition to exploring gas diffusion, some researchers have studied the behavior of
vapor in lithotripsy bubbles. Based on the fundamental works of Szeri, Matula et al.?3¢
implemented a reduced-order model based on scaling principles and compared model pre-
dictions with direct measurements of the bubble radius. They found that a significant
amount of vapor was likely ‘trapped’ inside the bubble during collapse. Such vapor trap-
ping is caused by diffusion between non-condensable gases and vapor, a process which limits
the rate of vapor condensation. In addition, Matula et al.*? recorded sonoluminescence data

from lithotripsy bubbles and obtained results consistent with the vapor trapping analysis.

1.2.4  Summary Discussion

From a review of literature pertinent to the thermodynamics of violent bubble collapses,
a consistent theme emerges. In particular, the dynamics of vapor have been implicated in
significantly affecting collapses related to sonoluminescence bubbles, laser-induced bubbles,
and lithotripsy bubbles. As for HIFU, Matsumoto et al.?® have considered gas-vapor bubbles
at relatively low excitation levels. However, no available models have simulated the dynamic
interaction of vapor with bubble motion in the context of megapascal acoustic pressures
and megahertz frequencies. It is reasonable to expect that vapor does play a role for HIFU
bubbles, especially when boiling may occur within milliseconds.?"%3%* Also, with regard to
bubble-enhanced heating during HIFU, vapor at elevated temperatures is thought to soften
bubble collapses and reduce the heating effect.*® Early components of this effort sought to
begin a more thorough consideration of the role of vapor in HIFU bubbles. 3657

For a complete evaluation of the impact of vapor dynamics, both mass transport and
attendant heat transfer processes must be considered. Heat and mass transport of vapor
are coupled through the enthalpy of vaporization as well as through the dependence of the
saturated vapor pressure on the liquid temperature. While the mass transport of vapor
is primarily governed by the kinetics of phase change, diffusive effects can also become
important if non-condensable gases are also present. Generally speaking, these diffusive

effects can limit the rate of vapor condensation; such trapping of additional mass inside the
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bubble during collapse alters both the pressure inside the bubble and the damping from
acoustic radiation.

Despite overall research progress that indicates the importance of vapor in inertially
controlled bubble dynamics, relatively little attention has been given to vapor in the context
of therapeutic ultrasound. As described in more detail in the ensuing section, the goal of
this effort was to elucidate the fundamental behavior of violent bubble collapses under
ambient conditions that include high levels of dissolved gases and elevated temperatures.

Such ambient conditions are directly relevant to SWL and HIFU treatments.

1.3 Scope

In this effort, the underlying hypothesis is that vapor transport plays an important role in the
bubble dynamics characteristic of therapeutic ultrasound. In much related work, acoustic
cavitation has been studied in terms of gas-bubble dynamics; moreover, this paradigm has
often been used to describe the dynamics of bubbles in the context of SWL and HIFU. To
test this paradigm, the main focus of this effort is an elucidation of the impact of vapor
using a numerical model in conjunction with experiments.

In the exploration of bubble dynamics relevant to SWL and HIFU, it is instructive to
categorize the effects of vapor transport as either thermal or mechanical. Thermal effects
describe the coupling of temperature at the liquid-gas interface with the vapor pressure
inside the bubble. In contrast, mechanical effects involve the total pressure achieved during
an inertial collapse and the associated loss of energy to acoustic radiation. Because diffusion
among vapor and non-condensable gas molecules can effectively limit condensation and trap
vapor during collapse, vapor transport can mechanically alter the evolution of pressure inside
a collapsing bubble. With this categorization, the scope of this dissertation is explicitly set
forth below.

To investigate gas-vapor bubble dynamics in therapeutic ultrasound, this effort includes
three components: (1) development, implementation, and benchmarking of a model for in-
ertial collapses and rebounds of individual, spherical bubbles; (2) collection of experimental
data regarding lithotripsy bubble collapses to test model predictions; and (3) analysis of

lithotripsy test conditions to aid interpretation of experimental observations in the context



14

of model predictions. The physical model is described in Chapter 2 and enables interpre-
tation of both thermal and mechanical behaviors associated with vapor transport during
a single collapse and rebound. The model explicitly assumes a single, spherical bubbles
that undergoes collapse and rebound without consideration of chemical reactions inside the
bubble or asymmetries that could lead to bubble fragmentation. Details of the model’s
numerical implementation are included in Chapter 3, while model predictions and compar-
isons with the available literature are presented in Chapter 4. Beyond the modeling effort,
the ensuing three chapters discuss experiments used to test model predictions with regard
to the mechanical impact of vapor transport. Chapters 5 and 6 respectively describe the
setup and results from experimentally observing the collapses and rebounds of lithotripsy
bubbles. As an outgrowth of these experiments, analyses of the test conditions were per-
formed in order to relate experimental observations to model predictions. These analyses
are pertinent to research on lithotripsy and are summarized in Chapter 7. Lastly, Chapter 8

provides a summary and conclusions.
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Chapter 2

BUBBLE MODEL

As mentioned in the introduction, the modeling approach considered here involves single,
spherical bubbles. In addition, considering the difficulties associated with direct numerical
simulation of bubbles excited by large acoustic pressures, we adopt a reduced-order model
based on scaling principles, as has been done previously.**3%*! In these published models,
time and length scales were explicitly identified for heat and mass transport inside the
bubble. However, no corresponding scales were implemented for temperature changes in
the liquid. While Yasui*' indirectly used similar ideas to simulate temperature changes
in the liquid, his assumed temperature distributions included their own singularities and
a fitting parameter that is hard to interpret physically. After initial implementation of a
version of Yasui’s model that did provide insights for guiding further work, a new scaling

approach for thermal behavior in the liquid was derived.

The model developed and implemented in this effort includes the following components:
liquid compressibility, heat transport in the gas and liquid phases, and mass transport of
both vapor and non-condensable gases. To describe the model in this chapter, we first
present fundamental governing equations for completeness and for definition of notation.
Then, the explicit bubble model is defined, including a detailed discussion of the scaling

principles used to estimate heat and mass transport.

2.1 Fundamental Equations

In this section, we state the fundamental equations—conservation of mass, momentum, and
energy; equations of state; and pertinent physical laws for heat and mass transfer. These
relations are presented below with a notation and format that are convenient to the ensuing

definition of the reduced-order bubble model.
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2.1.1 Conservation Equations in the Ligquid

Regarding the basic conservation principles, equations can be written for any fluid low and
are thus applicable to both the liquid and gaseous phases involved in cavitation. Accordingly,
the basic modeling approach is to apply the conservation equations separately to the liquid
and gaseous phases while considering the bubble wall as a moving boundary that separates
the flow regimes. Moreover, the fundamental conservation equations can be expressed either
in differential form for any arbitrary point in the flow or in integral form for a defined control

volume.

In this section, the differential forms for conserving mass, momentum, and energy in the
liquid are presented in a form that is typically used in deriving a radial equation of motion

for a bubble. For conservation of mass, the following continuity relation holds:

Dy o _
Dt+p(V'u)—at+V (pu) =0 (2.1)

In this relation, p is the liquid density, ¢ is time, u is the liquid velocity vector, and the
operator D/Dt = 0/8t + (u- V) represents a material derivative. Similarly, conservation of

momentum can be expressed in vector form as

Du

— =(V.-1)+f 2.2
r= (V) + (2:2)
where 7 is the complete stress tensor of the liquid and f is the net body force exerted
per unit volume. A convenient alternate form of the momentum equation is obtained by

assuming a constitutive relation consistent with a Newtonian fluid and neglecting viscous

effects. In this manner, we obtain Euler’s equation in the liquid as

Du
p—ﬁ-t- + Vp =f (23)

where p is pressure. Lastly, conservation of energy in the liquid is described by the heat

equation
De;

2= p(Vou)— (Veq)+ o (2.4)
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where e, is the internal energy per unit mass, q is the heat flux vector per unit area, and ¢
represents viscous dissipation. %%

For convenient reference in the derivation of a radial equation of motion, we rewrite the
conservation equations for mass and momentum after assuming spherical symmetry and

neglecting body forces such as gravity:

Op  10(rpu,)
E + ET =0 (25)
% + aur + 1_82 —
a " " or por

0 (2.6)

Here, r is the radial coordinate and u, represents the radial component of the velocity vector.
As noted by Prosperetti and Lezzi,* the state of the liquid may be expressed in terms
of a single thermodynamic variable if thermal effects in the liquid remain small. Hence,
an additional equation for thermal energy is not needed to derive the various Rayleigh-
Plesset equations for radial bubble motion. As noted by Hao and Prosperetti,® such radial
equations are well justified even for vapor bubbles under many boiling conditions. Moreover,

Storey and Szeri®® confirmed his justification for sonoluminescence bubbles.

2.1.2  Conservation Equations in the Bubble Interior

As shown by Prosperetti et al.,** enforcing an energy balance on the bubble contents is
superior to the invocation of a polytropic relation. To this end, we note that the conser-
vation equations from the previous section are also applicable to the gas inside the bubble.
However, it is convenient here to recast the equations in integral form to capture the energy
of the bubble as a whole.

Along these lines, we first recognize Prosperetti’s analysis from which we can treat the
pressure inside the bubble as uniform and ignore the momentum equation in the gas.®!
The soundness of this assumption for violent collapses has been considered and confirmed
by others.®® Next, we integrate equations (2.1) and (2.4) over the bubble volume. Using
the Leibniz Rule to move the time derivative outside the integral and using the divergence

theorem to convert the volume integral to a surface integral, we obtain a new form for the
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continuity equation:

—Q—/pde—pmV=-—/pmu—dA (2.7)
ot J, A

Here, the overdot indicates a time derivative, V is the bubble volume, A is the bubble
surface area with outward-pointing normal, and p,, is the molar density of gases inside the
bubble. If the viscous dissipation term is ignored, integration of the heat equation (2.4)

yields

pmg/eidV—pmeiV:—/q-dA—/piu-dA (2.8)
at 1% A A

where p; is the pressure inside the bubble. Note that in writing Equation (2.8) we have
used the earlier assumption that pressure is spatially uniform inside the bubble volume V.
In addition, we follow an assumption used in reduced-order models by taking other thermo-
dynamic variables to be uniform inside the bubble, except within a boundary layer at the
liquid-gas interface.®***® Considering spatial uniformity in addition to spherical symmetry,
we can directly evaluate the integrals in the previous two equations. Given that the molar
density is defined as p,, = n/V where n is the total number of moles of gas, the integral
form of the continuity equation (2.7) may be solved to determine the radial gas velocity at
the bubble wall
Rn

(ur)y_p = R— 3N (2.9)

where R denotes the bubble radius. Using this expression for the gas velocity at r = R, we

evaluate the integrals in Equation (2.8) to obtain

3 n 3R
o= —— | = - = 2.1
Prm €; 7o TP (n R) (2.10)

where ¢, is the radial heat flux out of the bubble. Below, this equation is used as a starting

point for enforcing an energy balance on the contents of the bubble.

2.1.8 Equation of State in the Liquid

In addition to the conservation principles discussed above, description of the pertinent

physics also requires equations of state for both liquid and gaseous phases. For liquids, we
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utilize a modified form of the Tait equation to relate thermodynamic variables as follows: %

(%)F . 1] (2.11)

In this equation, p is the pressure in the liquid, p is the density, I" and b are empirical

1
p—po‘"ﬁ

constants, and liquid properties at a reference state are denoted by the ‘0’ subscripts. For

consistency, we define b in terms of the ambient sound speed ¢, as follows:

1

= 2
PoCq

(2.12)

From data presented for water over a range of temperatures,®® we select I' = 6.5 for this

work.

2.1.4 Equation of State for Gases Inside the Bubble

Even though vapor and non-condensable gases are treated separately with regard to trans-
port in/out of the bubble, they are treated collectively to express a pressure-volume-
temperature relationship. In selecting an equation of state for the bubble interior, we

adopt a form of the ideal gas equation

p; = 2p,, RO (2.13)

where p, is pressure inside the bubble, p,, is molar density, 8 is temperature, and R is the
universal gas constant. Accordingly, the compressibility factor z represents the deviation
from ideal behavior and is unity for an ideal gas. The Redlich-Kwong equation of state
as adapted in 1972 by Soave was used to estimate z as the root of a cubic equation under
given thermodynamic conditions.% However, it was found that inclusion of non-ideal gas
behavior led to numerical difficulties in many of the violent collapses investigated in this
work. In addition, other researchers have found that even though the equation of state
affects quantitative results for modeling sonoluminescence bubbles, the underlying physical

trends are insensitive to the equation of state.®®
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Because the model developed here is approximate in nature due to its reliance on scaling
principles, the compressibility factor z was dropped. For convenience in defining notation,

we now rewrite the ideal gas equation in several forms:

nR  Nkgb
Di = Pm v v

(2.14)

In the above expressions, V' is the bubble volume, p,, = n/V is again the molar density, n
is the total number of moles of gas, N = nN, is the number of gas molecules, and N, is

Avogadro’s number. Accordingly, kg = R/N, is the Boltzmann constant.

2.1.5 Heat and Mass Diffusion

The equations that describe both heat and mass diffusion possess an identical form. Ac-
cordingly, we describe these equations for a generic scalar property ¢. The fundamental
empirical relation that describes diffusive processes is often called Fick’s Law for mass dif-

fusion and Fourier’s Law for heat conduction. This relation may be expressed as

J=—K Vo (2.15)

where J is a flux per unit area of the scalar quantity ¢, K is a constant, and V¢ is the
gradient of temperature or mass concentration. For diffusion processes in a moving fluid, the
physical behavior described by Equation (2.15) can be generalized to account for convection

in the fluid and time dependent changes in ¢. The resulting equation can be written as®®

D¢
57 =K V0 (2.16)

where D /Dt is again a material derivative, V? is the Laplace operator, and the diffusivity

x has been assumed constant in time and space.

2.1.6 Solubility of Gases in Water

Another empirical relation is typically used to describe the equilibrium dissolution of a gas

in a liquid. As such, Henry’s law relates the partial pressure of a given gaseous component
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p; to its molar concentration x; in the adjacent liquid as
p; =3z, (2.17)

where H, is Henry’s constant for the given solute and solvent. For oscillating bubbles, the
pressure inside the bubble is usually calculated as a part of the numerical solution of the
dynamics. Then, it is typically assumed that the concentration of any dissolved gas species
in the liquid at the bubble wall will always obey the above relation. Accordingly, Henry’s
law can be applied to bubbles as a boundary condition for the diffusion of dissolved gases

in the surrounding liquid.

2.1.7 Rate of Phase Change from Kinetic Theory

A model for phase change at a gas-liquid interface can be developed from the kinetic theory
of gases. Following the derivation of Carey,® we begin with Maxwell’s velocity distribution
for an ideal gas and consider a total of N molecules within an arbitrarily sized box of
volume V. As such, we consider the ideal gas law (2.14) and can express the rate at which
molecules will pass out of the box through one of its planar boundaries as

1/2
jr= ey (8k50) (2.18)

- ZVB Tm

In this relation, jy is the flux in molecules per unit time per unit area, m is the mass of a
single molecule and the other symbols have the same definitions as in Section 2.1.4. This

equation can be rewritten in terms of the molar flux as

1 1/2
jam (————MW) P (2.19)

where j, in the flux in terms of moles rather than molecules and A is the average molecular
weight of the gas species.

Note that if the box contains more than one type of gas, the molecular flux of an
individual species can be calculated from Equation (2.19) by using the species’ partial

pressure and molecular weight in place of the total internal pressure p; and average molecular
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weight M. The utility of this expression lies in its lack of explicit dependence upon the
dimensions of the original box. Hence, the flux must be the same for any planar surface
in the gas. This understanding along with the assumption that the radius of curvature
of the bubble remains large relative to molecular length scales suggests that we can use
Equation (2.19) for calculating fluxes across the surface of a spherical bubble. Though this
model for vapor transport breaks down under the extreme conditions present during violent
bubble collapses, the net effects of these inaccuracies over such short durations is minimal. "
Hence, the rate of phase-change mass transport across the bubble wall can be estimated

as the above molecular flux weighted by a ‘sticking’ probability that reflects the likelihood

that a molecule evaporates or condenses when impinging upon the interface.

2.1.8 Mean Free Path from Kinetic Theory

From the kinetic theory of gases, it is possible to define the mean free path of a gas molecule
in terms of the thermodynamic conditions of the gas. Because the mean free path defines

an appropriate length scale that is used later, it is convenient to define it here as%

V

A= m (2.20)

Above, V is again the bubble volume, N is the number of gas molecules inside the bubble,
and € is the hard-sphere molecular diameter as calculated from Lennard-Jones potentials. %
To account for the presence of both air and vapor inside the bubble, Q is estimated by av-
eraging the tabulated hard-sphere diameters for air and water. As noted by Poling et al.®®
with regard to diffusion coeflicients, it is typical to estimate the effective hard-sphere diam-
eter as an arithmetic mean rather than a weighted average based on mole fraction. This
same approach is adopted here to calculate mean free path as a part of the liquid-gas tem-
perature jump described in the next section. Inasmuch as concentration gradients are not
explicitly calculated in the model proposed here, the applicable mole fractions of air and

water at the bubble wall are not known.
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2.1.9 Liquid-Gas Temperature Jump

In the study of rarefied gas flows, it is well known from rarefied gas theory that slip conditions
may exist at boundaries of the gas flow. In particular, kinetic gas models have been used
to analytically predict the jump in temperature from a solid boundary to adjacent gas
molecules. ® In general, this temperature jump occurs when a non-zero temperature gradient
exists normal to the boundary. While the analytic solutions to this problem typically involve
an infinite, solid boundary to the gas flow, analogous conditions clearly exist during bubble
collapse as strong thermal gradients develop. Indeed, this effect has been included in other
bubble models that address temperature changes in the liquid.**¢”

Although the aforementioned bubble models have estimated the temperature jump with
an assumed thermal accommodation coefficient as well as other published parameters from
the rarefied gas models, we utilize a somewhat simpler formulation here. Accordingly, we
only seek to capture the qualitative behavior of the temperature jump. Following Sharipov

and Kalempa,® we may write the temperature jump as

N
T,—0.=C\ 5 » (2.21)

where 6, and T, are the gas and liquid temperatures at the bubble wall (i.e., at r = R).
Also, A is the mean free path in the gas and ( is the temperature jump coefficient determined
from kinetic gas models. In the literature relevant to the temperature-jump condition, it
is conventional to estimate A based on measurable gas properties such as viscosity and the
surface temperature T,,. However, for convenience, we employ the estimate of mean free
path from the previous section in this work. In specifying the jump coefficient ¢, we note
that calculated values depend upon the kinetic model used to describe the gas behavior.
Moreover, given that the calculated values typically require an assumption of an infinite
solid boundary, we conclude that the appropriate value for a bubble is not well known.
However, the values calculated by Sharipov and Kalempa® for several noble-gas mixtures
suggest that likely values range from about 2-2.5. We select a value { = 2 here as a
round number—calculations not presented indicate that the model is not sensitive to this

parameter.
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Despite the inclusion of a temperature jump in prior bubble models, the applicability of
the jump condition for bubble motions was not explicitly discussed. From the introductory
comments stated by Sharipov and Kalempa,® we recognize that this temperature-jump
model is only appropriate when the Knudsen number Kn (defined as the ratio of the mean
free path to the bubble radius) remains less than about 0.1. Moreover, for Kn less than
about 0.01, the temperature jump can be neglected. Upon estimating the Knudsen number
for a lithotripsy bubble, we find that Kn =~ 0.1 just after the tensile portion of the shock
wave arrives; however, during the remainder of the bubble motion, Kn < 0.01. For sonolu-
minescence bubbles, K'n remains less than 0.01 during the end-collapse stages and less than
0.1 otherwise. These cursory estimates of the Knudsen number confirm that the conven-
tional relation for estimating temperature jumps is applicable, though the temperature jump
may often be negligible. In addition, considering that bubble motions are approximately
isothermal except during collapses, we note that the necessity of including any liquid-gas
temperature jumps in a bubble model is questionable. For consistency with other models,

the ability to model temperature jumps is included here.
2.2 Explicit Model Description

The essence of this model is to separately enforce conservation principles in the liquid and
gaseous phases, while transfer of heat and mass in/out of the bubble is estimated from basic
physical laws. The radial dynamics of the bubble are determined from the conservation of
mass, momentum, and energy in the liquid and are coupled to the gas through the pressure
generated inside the bubble. In turn, the pressure inside the bubble is governed by the
internal gas dynamics, which include the boundary fluxes of heat and mass. Following
this approach, model components for both the radial dynamics and the gas dynamics are

described below.

2.2.1 Radial Dynamics in the Liquid

As noted in Section 2.1.1, the radial bubble dynamics are modeled by enforcing conserva-
tion of mass and momentum in the liquid. While energy must also be conserved in the

liquid, derivations of the commonly used radial equations do not strictly enforce energy
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conservation. Because we are interested in capturing the physics of both vapor and gas
bubbles, temperature changes in the surrounding liquid caused by the bubble motion itself
may become important. % However, to avoid the difficulties associated with direct numerical
simulations of strongly forced vapor bubbles, we follow the traditional approach of specify-
ing a Rayleigh-Plesset style equation for the radial dynamics. As discussed further below,

we will address the thermal behavior in the liquid separately.

A Lossless Rayleigh-Plesset Model

To gain insight into the form of ODEs that govern bubble motions, the most simple equation
for radial dynamics is derived here. The resulting equation is a lossless Rayleigh-Plesset
model and can be derived with various approaches. In one approach, the pressure-volume
work of bubble expansion is equated with the resulting kinetic energy in the liquid.®® In
an equivalent approach, the conservation equations for the liquid are integrated spatially
over the radial coordinate. The latter approach is considered here. As such, we begin with
the conservation equations (2.5) and (2.6) and define boundary conditions on the velocity

u,.(r,t) and pressure p(r,t) fields:

w(Rt) =R  u(co,t)=0 (2.22)

p(R,t) =p,  ploo,t) =p. (2.23)

As indicated, R is the radial distance to the bubble wall, R is the velocity of the bubble

wall, p, is the pressure in the liquid at the bubble wall, and p. is the pressure in the

liquid far from the bubble. Assuming that the liquid is incompressible, we can integrate

Equation (2.5) by separation of variables. Eunforcing boundary conditions on u,, we have
R°R

u(r,t) = —

(2.24)

Substituting this result into Equation (2.6), taking the appropriate time derivatives, and

integrating from r = R to oo, we identify the ambient liquid density as p, and obtain a
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simple Rayleigh-Plesset equation:

3} . 1
RE+3E2 =L (o —p) (2.25)
2 Po

With the understanding that p, can be related to the pressure inside the bubble p;, Equa-
tion (2.25) along with a model of the gas dynamics to compute p, completes a formulation
for bubble motion. Acoustic excitation of the bubble enters through p.. Given the original
assumption of spherical symmetry, it is implicitly assumed that the acoustic wavelength of

the excitation is much greater than the bubble radius.

The Gilmore Model

Although the above lossless model is insightful, a realistic model must account for liquid
compressibility. While the details associated with deriving such models are omitted here,
complete derivations are readily available in the literature. ™™ To put these various models
in perspective, Prosperetti and Lezzi®® have approached the derivation as an asymptotic
expansion in terms of the ‘small’ parameter (R/c,), which is the acoustic Mach number.
Here, R is again the velocity of the bubble wall and ¢, is the speed of sound at reference
conditions.

With this approach, the effects of liquid compressibility can be taken into account and
a family of first-order equations can be derived. For perspective, the simple model derived
above is a zeroth order model as reflected by the initial assumption of liquid incompressibil-
ity. Given the insights provided by expansions in R/ Co, higher order models are expected to
be more accurate in describing the inertial bubble dynamics of interest here. In particular,
the equation originally derived by Gilmore™ is known to perform remarkably well when
compared with full PDE simulations. The success of the Gilmore model can be explicitly
traced to its formulation in terms of the enthalpy in the liquid at the bubble wall.*®

Based on the discussion above, the Gilmore equation is chosen for modeling the radial

dynamics in the liquid. This equation can be written as

B\ s 3(. R\ s R R\ R,
(1—5>RR+§<1—@>R=<1+5>H+<1~6)5H (2.26)
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where capital letters C' and H denote the sound speed and enthalpy evaluated at the bubble
wall. The sound speed ¢(r,t) and enthalpy h(r,t) are defined everywhere in the liquid as

dp
== and h= | = 2.27
ap p (2.27)

Using the equation of state (2.11) to evaluate these expressions, we obtain

T 2 2
= —@—f—j‘—B) and h = CI‘—iO

(2.28)

where B=1/(bT) — p,.

To implement this model, ¢ and A must be evaluated at the bubble wall. Accordingly,
the pressure in the liquid at the bubble wall p,, must be determined as a boundary condition.
Assuming that we have calculated the pressure inside the bubble p;, we consider the effects
of liquid viscosity (u) and the interfacial surface tension (o) to define p,, as follows:

_ 4,[LR 20
pu,1 - pz R R

(2.29)

In this expression, the last term involving surface tension arises from Laplace’s relation, %
while the second term represents a consideration of the three-dimensional stress state of an

incompressible liquid at the gas-liquid interface.™

Although we have finished a statement of the Gilmore formulation, it is instructive to
evaluate the enthalpy at the bubble wall and its time derivative. Noting that evaluation of
the enthalpy at infinity requires consideration of the pressure at infinity to be the sum of

the reference pressure and the acoustic forcing (i.e., Poo = Po + Pac), We obtain

N r _
B o= S o [0t B ot + BT 2a0)
) —
. bT)~" —ur . _yr,
H ~ _(——,[2— [(pw + B) 1/pr - (pO +pac + B) T p‘w] (231)
0

The above expressions are suitable for inclusion in a computer program and clearly illustrate
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that the acoustic forcing appears through its impact on the enthalpy H.

2.2.2 Gas Dynamics Inside the Bubble

As mentioned above, a formulation of the radial bubble dynamics problem is closed by
determining the pressure inside the bubble. Accordingly, the gas dynamics are modeled to
determine the thermodynamic state of the bubble contents. As presented in Section 2.1.2,
the conservation equations may be enforced to conclude that the thermodynamic conditions
inside the bubble are spatially uniform and to yield a single equation for the energy within

the bubble (2.10).

Equations for the evolution of bubble temperature and/or pressure as derived from
energy conservation considerations have been presented elsewhere.?*3¢5" However, these
papers do not provide a complete derivation for the case in which mass transfer is considered.

Accordingly, a complete derivation is provided below.

Beginning with Equation (2.10), we utilize the specific heat at constant volume ¢, to

define the internal energy at temperature 8 as e, = ¢,0. Ignoring the influence of temperature

65

on the vibrational modes of gas molecules,® ¢, remains constant. Hence, if we express the

radial heat flux ¢, into the bubble with Fourier’s Law (2.15), we obtain

. (n 3R\ 3k, 00
PmCof = D; (n i > + = B - (2.32)

where p; is the uniform pressure inside the bubble and £, is the thermal conductivity of the
gas. Next, we note that the constant-pressure and constant-volume specific heats can be
related by the universal gas constant for an ideal gas: ¢, = ¢, + R. In addition, we equate
the definition of molar density p,, = n/V with its value from the equation of state (2.14),

take a time derivative, and solve for 8 as
, 3R 7
0=9(E—+———E) (2.33)

Finally, substituting (2.33) into (2.32) yields the following equation for the rate of change
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of pressure inside the bubble

. i 3R 3k, 00

where v = ¢,/c, has been introduced. Note that this equation is identical to that provided
by Matula et al.?® if chemical reactions are ignored. Also, if we consider ¢, as a function of
temperature, Equation (2.10) can be simplified to an expression equivalent to that used by
Toegel et al.3* for evolution of the bubble temperature.

For clarity in the notation, we mention here that the amount of gas inside the bubble
and its time derivative (n, i) represent sums of contributions from non-condensable gases
(ng, y) and from water vapor (n,, n,). The formulations for calculating 7, and n, are

discussed in detail below.

2.2.3 Heat and Mass Transport

In order to model heat and mass transport to/from a bubble, spatial gradients of temper-
ature and mass concentration must be calculated. As described above, direct numerical
simulation of violent bubble collapses typically leads to numerical instabilities as the gradi-
ents become very steep. Alternative approaches include approximation of the gradients from
scaling principles and a Lagrangian formulation of the problem that requires evaluation of
a convolution integral.”" Both of these approaches have been implemented to calculate
aspects of heat and mass transfer in the present model. In the sections below, relevant time
and length scales are discussed first; subsequently, model formulations for specific aspects

of heat and mass transport are described.

Time and Length Scales

The goal of this section is to define time and length scales associated with the diffusion
of both heat and mass. In context, ‘scales’ does not refer to scales used to derive uniform
asymptotic expansions. Rather, ‘scales’ refers to order-of-magnitude estimates of character-
istic times and lengths associated with transport phenomena. As such, several time scales

are derived from the dynamics of bubble motion, while lengths are calculated from the
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partial differential equation for diffusion. Several time scales are derived below, reflecting
aspects of the bubble dynamics associated with compression of the gaseous phase as well as
phase change. While the scales are derived in this section, their synthesis into the model is

left to subsequent sections that explicitly treat heat or mass transport.

To estimate spatial gradients from scaling principles, we assume that the gradient is
constant across a boundary layer. This assumption is illustrated in Figure 2.1 for both heat
and mass transport. As such, §,,, d,, and §; represent boundary layer thicknesses, T and
0 respectively denote the temperature in the liquid and gaseous phases, and C indicates
mass concentration. In addition, the subscripts v and g respectively denote vapor and non-
condensable gases, while the subscripts w and oo indicate locations at the bubble wall and
at a distance far from the bubble. As depicted in Figure 2.1, the temperature 6 and vapor
concentration C, inside the bubble are assumed to be constant everywhere except within
the boundary layers. Similarly, the liquid temperature is defined to be constant at T,
everywhere except within the boundary layer. Based on these assumed conditions, fluxes of
heat and mass can be estimated from Equation (2.15), provided that convection is ignored

and the boundary layer thicknesses are known.

To estimate boundary layer thicknesses, we follow the approach adopted by Matula
et al.’® and Toegel et al.®* Assuming a time scale for bubble motion can be estimated,
we use the partial differential equation for diffusion to estimate a characteristic penetration
distance. As such, considering the general diffusion equation (2.16) in Cartesian coordinates,

we neglect convection and discretize derivatives to obtain

Ad _ A9

At Az

(2.35)

Recognizing that a diffusive penetration distance can be defined as a relative change in the

spatial dimension Az, we define an approximate boundary layer thickness as

§=Azr= kT (2.36)

In the above equation, 7 = At is an independent time scale that characterizes radial bubble
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motions.

To identify time scales for bubble motion, two basic approaches are considered. In the
first approach, a time scale is defined as the ratio of a characteristic length or volume to a
corresponding velocity. 35" Using a volumetric ratio V/V, we can express the time scale
in terms of the bubble radius R as follows:

ft

" T 3)E]

(2.37)

Note that this definition utilizes only the magnitude of the radial velocity in order to main-
tain positive values for the time scale. In the second approach, we consider the simple
Rayleigh-Plesset equation (2.25) and neglect the pressure far from the bubble to obtain the

following discretized expression:

AR 3 AR? »
S oot _De (2.38)
A2 2 A2 Po

From this expression, we can define a characteristic time for bubble motion by solving for At

when AR ~ R. Neglecting viscosity and surface tension from relation (2.29) and ignoring

the constant multiplier, we obtain a second time scale

R

= _(pi/po)l/g (2.39)

Ty

In this expression, p; is the total pressure inside the bubble and p, is the ambient liquid
density.

In comparing the above time scales 7; and 7,, notable differences are observed. Although
7, has been used in prior reduced-order models in the literature,®* 3¢ the presence of a
singularity as | R goes to zero leads to awkward numerical behavior. While such singularities
can be removed by imposing a minimum amplitude for iR[ in Equation (2.37), use of 7,
inherently addresses the problem without reliance on an arbitrary minimum velocity. As
discussed in further detail in the ensuing sections, both of these time scales are used in the
present model.

While the basic time scales discussed above can be interpreted geometrically in terms
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of characteristic lengths and velocities, a separate thermal time scale can be identified for
temperaturé changes in the liquid phase. In addition to heat conduction effects that are well
described by the aforementioned scales for bubble motion and boundary-layer thicknesses,
the liquid temperature at the bubble wall is affected by the thermodynamics of evaporation

1.57 addressed temperature

and condensation. In the previous literature, only van Iersel et al
changes in the liquid using a model based on length and time scales. In this work, they
used an approach based on equations (2.36) and (2.37) to model bubble dynamics in liquid

carbon dioxide with relatively small acoustic excitation amplitudes.

To introduce a new time scale derived from the thermal effects of phase change on the
liquid, we consider a thin shell of liquid whose thickness is d; [see Figure 2.1(b)]. First,
we approximate the mass of liquid in this shell as p, 47 R?§; and assume that the liquid
temperature 7T, is uniform within the shell. Next, we consider heat transfer to/from the
liquid shell only from phase-change processes. This approach is tantamount to assuming
that thermal conduction on the inner and outer surfaces of the shell roughly offset one
another while convection is negligible. Notably, these assumptions are most consistent with
isothermal bubble behavior at large radii, when convection is minimized by slow radial
velocities and conduction is minimized by the lack of significant thermal gradients. Now,
enforcing an energy balance on the liquid shell leads to an expression for an incremental
change in temperature AT, as a function of an incremental time change At:

Ln,

AT, = - e
“ po4mR? 67 ¢,

At (2.40)

Above, 1, is the molar evaporation rate at the liquid-gas interface, L is the latent heat of
vaporization, and c,; is the heat capacity of the liquid. Setting the magnitude of AT, to

unity, we can then solve for a phase-change time scale as

po AT R? 67 ¢,
Ts = ———7 7
L

My

(I°K) (2.41)

Further, given that 7, represents a combination of evaporative and condensative fluxes, we

note that a singularity occurs when these fluxes cancel one another and n, = 0. To address
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Figure 2.1. Schematic depiction of assumed boundary layers used in the model. In each diagram,
the blue line refers to a bubble wall whose curvature implies gas on the left and liquid on the right.
The red lines indicate gradients in mass concentration or temperature.

the singularity, only the condensative flux is used to calculate 73; this flux is explicitly
written below as the p, term from Equation (2.45).

As discussed in more detail in the following sections, 7, and 75 are used in conjunction
with Equation (2.36) to define the thermal boundary layer thickness in the liquid 6,. Using
the time and length scales defined in this section, the explicit equations used to calculate

heat and mass transfer are presented below.

Mass Transport of Non-Condensable Gases

As suggested in Section 2.1.6, Henry’s law can be used to couple the thermodynamic state
of non-condensable gases inside the bubble to the diffusion of these same gases in the
surrounding liquid. Accordingly, if we formulate a mass diffusion problem in the liquid
[see Equation (2.16)] and use Henry’s law to provide a dynamic boundary condition, the
problem may be solved for the flux of non-condensable gases across the bubble wall.

An approximate solution to the mass diffusion problem for a single, spherical bubble was
first presented by Eller and Flynn.™ This is the classic solution used to describe rectified
diffusion in gas bubbles. Eller and Flynn transformed the problem into an asymptotic series

of equations and analytically solved the zeroth- and first-order equations. Noting that the
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Eller-Flynn solution is uniformly valid in time only under equilibrium conditions at which
there is no net mass flux to or from the bubble (i.e., the ‘high-frequency’ solution), Fyrillas
and Szeri™ developed a new solution that accounts for non-equilibrium conditions in which a
diffusive boundary layer develops. Here, we adopt the zeroth-order Eller-Flynn solution for
its simplicity and its ability to capture the basic features of diffusion. The explicit approach
was originally developed and implemented to study mass diffusion behavior for lithotripsy
bubbles by Church®* and by Sapozhnikov et al.’® Note that this approach does not require
the scaling assumptions described in the previous section; accordingly, the concentration
gradient in Figure 2.1(a) is illustrated by a wavy line and no boundary layer thickness is

explicitly depicted.

To state the zeroth-order Eller-Flynn solution, we first define a time scale for diffusion

in terms of the actual time t and the bubble radius R as

t
r, = / R*dt (2.42)
0
Next, we define the function JF to represent the concentration difference that drives diffusion:

F = Cpus = Cpue = 2 (2.43)

Here, ¢, is the saturation concentration of non-condensable gases in the liquid at the
bubble wall and c, ., is the initial concentration everywhere in the liquid. Also, p, is the
partial pressure of non-condensable gases inside the bubble, p, is the ambient pressure in
the liquid, and ¥ is Henry’s constant for air from Equation (2.17). This arrangement of
concentrations is illustrated in Figure 2.1(a), where the wavy red line indicates that no

explicit shape of the concentration gradient in the liquid is assumed.

Now, if n, represents the number of moles of non-condensable gas inside the bubble and

N0 represents n, at time ¢ = 0, then we can estimate diffusive transport effects through the
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following convolution calculation:

Ng = Ngog — 4V FD/ ———dr’ (2.44)
/ Vs —T

Note that D in this equation is the diffusion constant of the non-condensable gas in the
liquid and is analogous to « in Equation (2.16). From this solution, the current amount of
non-condensable gas inside the bubble n, may be calculated at a given time. However, for
a given bubble size, the current value for n, implies an updated current value for p,, which
was already used in Equation (2.44) to estimate n,. To address this circular dependence,
Church® suggested that sequentially updating n, and p, three times provided a reasonably
accurate convergence for lithotripsy bubbles. For computational convenience, an adaptation
of this approach was used here. This adaptation is discussed further in the next chapter on

model implementation.

Mass Transport of Vapor

The model for evaporation and condensation at the bubble wall is based on the kinetic theory
of ideal gases as discussed above in Section 2.1.7. The net flux of vapor into the bubble may
be estimated by applying Equation (2.19) for both the evaporative and condensative fluxes
and subtracting condensation from evaporation. Performing this superposition of fluxes and

neglecting any differences between T, and 6,,, we obtain

~

g

.v:4 RZ—______ sat T Hu
e = AR g P P

(2.45)
where 7, is again the time rate of change of the number of moles of vapor inside the bubble,
T, is the liquid temperature at the bubble wall, p,., is the saturated vapor pressure evaluated
at the bubble wall temperature, p, is the partial pressure of vapor pressure inside the bubble,
and M is the vapor’s molecular weight. Based on molecular dynamics simulations,® we
select a value ¢ = 0.4 for the accommodation coefficient. While Equation (2.45) is generally
applicable as an estimate of phase change, the very meaning of phase change is not sensible

at supercritical temperatures. Following Akhatov et al.,*? 7, is identically set to zero when
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either 8 or T,, exceeds the critical temperature of water.

Strictly speaking, the above kinetic equation for vapor transport only applies for a pure
vapor bubble below the critical temperature of the liquid. Above the critical temperature,
no transport occurs since the phases are ill-defined. In addition, if non-condensable gases
are present, diffusion among vapor and non-condensable gas molecules must also be con-
sidered. In particular, such diffusion is important when the time scale for diffusion is much
slower than the time scale for bubble motion. Following other reduced-order models,3*:3¢
we associate evaporation with bubble growth and ‘expanded’ diffusive boundary layers such
that diffusion does not limit the kinetic evaporation rate. Conversely, we note ‘compressed’
boundary layers during collapse, thereby requiring consideration of diffusion-limited conden-
sation. This phenomenon can be described as ‘vapor trapping,” whereby non-condensable
gas molecules at the liquid-gas interface inhibit condensation and trap vapor molecules in-
side the bubble.?® Again following the aforementioned reduced-order models, we use the
scaling principles from Section 2.2.3 to estimate the maximum condensation rate that is

permitted by mass diffusion.

Under the assumption of a diffusive boundary layer with a constant concentration gra-
dient [see Figure 2.1(a)], we consider the basic equation for diffusive flux (2.15), discretize

the spatial gradient, and express the maximum condensation rate as follows:

Cv - Cv,sat

(h17)mam,cond = 47TR2 {‘DIQ 5

(2.46)

Here, D, is the diffusion coefficient between vapor and non-condensable gas molecules, C, =
n,/V is the concentration of vapor inside the bubble, C, .., is the equilibrium concentration
at the surface temperature 7,,, and 4,, is the boundary layer thickness for mass diffusion. To
estimate, d,,, we consider time scale 7; from Equation (2.37), introduce an arbitrary scale

factor a,, for fine-tuning, and find the penetration distance from Equation (2.36):

(2.47)

In addition, 4,, is constrained to remain less than or equal to the bubble radius. As noted
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above, 7; possesses undesirable singularities when lR[ = 0. However, model calculations
using both 7, and 7, indicate that 7, yields better scaling estimates in that experimental
data can be matched with values of a,, near unity. Moreover, the singularity is readily
addressed by assigning a minimum value for |R| Model results were found to converge
when minimum values on the order of 1 or smaller were used. A minimum value of 1073
was adopted in this effort as a relatively small velocity that does not introduce numerical

artifacts.

Discussion of Reduced-Order Heat Transport Models

The classic approach for estimating thermal damping for a gas bubble involves calculation
of a temperature gradient in the gas without regard to thermal effects in the liquid. This
makes sense for a gas bubble; however, for a bubble with significant vapor content, phase
change and the enthalpy of vaporization can significantly affect the energy balance at the
bubble wall. Consequently, modeling the heat transport processes of gas-vapor bubbles

should comprehensively address both liquid and gas phases.

Of the available reduced-order models in the literature, here we specifically discuss two
that address heat transport in both liquid and gas phases. As mentioned at the beginning
of this chapter, Yasui*' incorporated heat transfer in the liquid by assuming exponential
temperature profiles in the liquid. Accordingly, the heat transported out of the bubble (i.e.,
heat conduction from the gas phase and heat of vaporization from vapor condensation) is
used to calculate the rate at which a boundary layer of liquid changes temperature. Hence,
this approach includes some thermal mass in the liquid near the bubble. In a different
approach, van lersel et al.®” begin with the same equations and algebraically solve for
the temperatures inside the bubble and in the liquid at the bubble wall. The algebraic
solution is based on the use of aforementioned scaling principles to estimate boundary layer
thicknesses in the gas and in the liquid. Given the nature of this algebraic solution, the
liquid temperature at the bubble wall is determined uniquely by the current state of the
bubble. Consequently, this approach discounts the thermal mass of the liquid; the prior

history of bubble motion does not affect the thermal behavior.
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Weighing the merits of these basic approaches, note that Yasui’s model has the potential
to capture the relevant dynamics over many cycles of oscillation by ‘remembering’ the bubble
history. Such a capability is essential for modeling a HIFU bubble over thousands or even
millions of acoustic cycles. However, we also recognize that any model based upon scaling
principles must be tuned by pertinent experimental data. Because it is not clear how to
experimentally quantify such thermal behavior in the immediate vicinity of an oscillating
bubble over thousands of cycles, the simpler task of understanding a single collapse and
rebound is attempted here. Accordingly, the present model approximates the heat transport
of gas-vapor bubbles with a variation of the aforementioned algebraic solution.

Before proceeding to state this algebraic model, it is constructive to describe other efforts
to model heat transfer that were undertaken in this work. In particular, a version of Yasui’s
model was implemented and found to be only marginally stable when simulating violent
collapses in SWL and HIFU. In a separate effort to capture the effects of thermal mass in
the liquid, the zeroth-order convolution solution from Plesset and Zwick™ was implemented.
This solution is completely analogous to the Eller-Flynn mass diffusion solution presented
in Section 2.2.3 and utilizes the ‘boundary-layer’ formulation also employed in sophisticated

sonoluminescence models.***® Although numerical instabilities were also encountered with
the Plesset-Zwick solution, simple test cases were utilized for comparison with the algebraic

solution. Accordingly, details of the Plesset-Zwick model are explicitly stated below.

Plesset-Zwick Solution for Thermal Diffusion in the Liquid

The problem for thermal diffusion in the liquid is described by Equation (2.16), where x
refers to the thermal diffusivity of the liquid. This problem is completely analogous to that
for mass diffusion in the liquid presented in Section 2.2.3. Again using the time scale 7.,

the solution is obtained by updating Equations (2.43) and (2.44) as follows:

1 0T

r=R

g'th
=1/ 2.49
pOCpL / V ef -7 ( )
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Again, Figure 2.1(b) illustrates the relevant liquid temperatures, though no assumptions
about the structure of the boundary layer are made. To implement the Plesset-Zwick
solution, the temperature gradient in Equation (2.48) is found algebraically from the heat

transport equations (2.50) and (2.51).

Algebraic Balancing of Heat Transport

To determine an algebraic solution for heat transfer, we formulate the problem by assuming
imposed conditions on the uniform gas temperature 6 and the constant temperature 7.
far from the bubble. While T, is a generally applicable boundary condition, € is imposed
by the radial bubble dynamics. As such, at any given time, the bubble radius R and the
pressure inside the bubble p; are calculated from Equations (2.26) and (2.34). In turn, the
uniform temperature @ can be calculated from the ideal gas equation of state (2.14). Now,
for any time at which 6 and T, are known, the heat transport may be determined by solving
for the gas and liquid temperatures at the bubble wall (6, and T,,).

In the formulation described above, radial dynamics are imposed and heat transport is
then estimated. However, Equation (2.34) clearly couples the radius to the heat transport
through a thermal conduction term. Although the numerical implementation of this mod-
eling approach recognizes this coupling and seeks convergence between the radial and the
thermal dynamics, the algebraic solution presented in this section can be treated as if 6
were imposed by the radial dynamics. This solution is described below, while the explicit
numerical treatment is deferred to the next chapter.

To determine heat transfer effects, we first assume linear concentration gradients across
thermal boundary layers in both the liquid and the gas [see Figure 2.1(b)]. Then, using
Fourier’s Law from Equation (2.15) with discretized gradients, we enforce an energy balance
at the liquid-gas interface as®”

- T,-T. . ) .
6, — 0 +4r R kb, ———=+n,L + ¢, (R, +7,) (0, —T,) =0 (2.50)

2
4rR* k, 5 5

Here, k, and k; are the thermal conductivities in the gas and liquid, £ is the heat of

vaporization, and c, is the heat capacity of the mixture of vapor and non-condensable gas
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molecules that changes phase and temperature from T, to 6,. Next, we note that T, and

6, can be related by a temperature-jump relation based on Equation (2.21):

0,—0
86

T, — 6, = CA (2.51)

The previous two equations can now be solved for T, and 0, as long as the boundary layer
thicknesses can be estimated.
Following the approach outlined in Section 2.2.3, we define the thermal boundary layer

in the gas using the time scale 7, in conjunction with Equation (2.36). We obtain

1/2
k R
do=a g (2.52)
’ ’ (pmcp \/E/Po)

where a, is an arbitrary multiplicative factor, p,, is the molar density of gases inside the
bubble, and ¢, = ¢, + R is the constant-pressure heat capacity. Moreover, §, is required to
remain less than or equal to the bubble radius.

To define an equivalent boundary layer in the liquid, we note the contributions of both
conduction and phase change to temperature changes. Accordingly, two relevant time scales
(72 and 73) were defined in Section 2.2.3. Used with Equation (2.36), these time scales lead

to the following estimates of boundary layer thickness:

k R 1/2
5T1=( = ——-) (2.53)

PoCpr £/ Di/ po
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k;, 4mR? ki2rMRT,
Boy = ( . AT R? poc,r 5T2> N By = EVETH R w (2.54)
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Above, c,;, is the heat capacity of the liquid while 6, and 61, correspond to time scales 7,
and 73, respectively. Moreover, as mentioned above, dr, avoids singularities by including

only the condensative term from Equation (2.45) for 7,,.
For simplicity, using one or the other of these thicknesses would be desirable. Upon

closer examination, it is apparent that dr, remains smaller than é;; for an inertially collaps-

ing bubble. From the perspective that the actual boundary layer thickness will be as thin
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as necessary to accommodate the relevant energy fluxes, using only 6, is appealing. How-
ever, using a scaling with dr, alone does not produce liquid temperatures (7,,) that closely
match those calculated by the Plesset-Zwick approach from the previous section, wherein
no boundary layer scaling is assumed. On the other hand, using d;, alone introduces a
numerical instability. To match the Plesset-Zwick results, the following strategy for scaling

the thermal boundary layer in the liquid was adopted:

ar (0.3, +0.76 when T, or 0 < T,
5T _ T ( T1 ’T'Q) (255)

arory when T, or 6 > T,
Here, a; is an arbitrary factor for fine-tuning and 7 is the critical temperature of the liquid,
above which only thermal conduction occurs. Although the chosen linear combination of d1,
and 07, is somewhat arbitrary, the above formulation was found to be numerically stable and

to provide estimates of T, that agree with the Plesset-Zwick approach. Further discussion

of this choice of scaling is deferred to Chapter 4.
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Chapter 3
MODEL IMPLEMENTATION

While the previous chapter describes the assumptions and equations used to formulate a
model, it does not describe how this model was implemented to generate numerical results.
The numerical implementation is presented here. Considering that the essence of the model
is a set of ordinary differential equations (ODEs), a typical approach is to define a state
vector y and to formulate the ODEs in state-space form y’ = f(y,t), where ¢ is time and
the prime denotes a time derivative.

In this form, various numerical integration algorithms can be used. An adaptation of
this approach was adopted here, wherein a fifth-order Runge-Kutta routine with variable
step sizing was implemented with double precision in Fortran95 and compiled in gfortran.™
Moreover, the Fortran code was written with switches that allow the various mechanisms
of heat and mass transport from Section 2.2.3 to be turned on or off, thereby enabling
exploration of the impact of each mechanism on the dynamics. Details of the numerical

integration strategy and its convergence are provided below.
3.1 Numerical Model

3.1.1  Integration Algorithm

The numerical integration is performed using an adaptive fifth-order Runge-Kutta method
with explicit time-marching that includes error estimates by also evaluating an embedded
fourth-order solution.™ In simplest terms, if the governing equations can be expressed in
state-space form, then the numerical integration by Runge-Kutta can proceed by just eval-
uating the time derivative y’. The manner in which the time derivative is calculated is
discussed in the ensuing section.

The error estimates mentioned above are used to enforce an error tolerance on each time

step and to adaptively determine the size of each time step. Such variability in the step size
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is necessary here because of the numerically stiff nature of bubble collapses, which involve
both fast and slow time scales. Error estimates are normalized to the current value of each
state variable and then compared to a dimensionless integration tolerance e. If the error
exceeds the tolerance for any state variable, the integration step is rejected and a smaller
time step is chosen. If the error tolerance is met for all variables, the step is accepted and a
larger step size is selected for the next attempted integration step. Consider an attempted
time step of size dt and a maximum error estimate among state variables of €. Then, the

variation of step size proceeds according to the following rules:

if € > ¢, step rejected:
At yueee = [0.8 (6/8)1/4} dt
dt et = max{dt, yess, 0.1 dt, 107°° sec}

if £ < e, step accepted:
b yuens = [(1/0.8) (6/8)1/5] dt
dt,eor = min{dt yess, D dt, 1077 sec}

where dt,,... is an estimate for the next time step and dt,..., is the actual size chosen. Note
the ‘max’ and ‘min’ operators select the respective maximum and minimum values and that
the explicit values used in the above rules were chosen for successful integration of bubble

collapses and rebounds.

3.1.2  Treatment of State Variables and Thermal Variables

As shown in the upper left corner of Figure 3.1, the state variables used for the Runge-
Kutta algorithm described above include the bubble radius (R), velocity (R), pressure (p;),
moles of non-condensable gas (n,), and moles of water vapor (n,). While these variables
technically define the state of the bubble, they do not address any changes in the gas and
liquid temperatures at the bubble wall (6, T, ). Because these liquid temperatures affect
the heat transfer from the bubble as well as the saturated vapor pressure at the interface,

these thermal variables must be ‘settled’ during each time step to address heat transport.

In the schematic of Figure 3.1 for each Runge-Kutta time step, the substep used to update
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the thermal variables is outlined in red. Due to the coupling of heat transport to the time
derivative of the state variable n,, up to 10 iterations are used to solve the heat transport
problem in an attempt to achieve convergence. As noted in the figure, the thermal substep
is executed using either the scaling approach from Section 2.2.3 or the convolution solution
from Section 2.2.3. This approach of using a substep to ‘settle’ variables that impact the

bubble’s state is comparable to that implemented by Church®* for mass diffusion.

Having defined the thermal substep, we now describe the overall algorithm used to exe-
cute each Runge-Kutta time step. First, the current value of the state vector y* at the start
of the k' step is used to update the fluid properties (see Section 3.1.4 and Appendix A).
Next, evaluation of the state derivative y’ involves two substeps: settling the thermal vari-
ables as described above and calculating time derivatives for the remaining variables. Note
that the convolution solution for the transport of non-condensable gases cannot be easily
implemented to obtain 7,. Numerical evaluation of a time derivative of Equation (2.44) is
possible; however, the derivative worsens the singularity encountered at 7., = 7’ and causes
numerical instabilities for small time steps. Church® used a substep to settle n, and its
associated partial pressure. Here, we choose to decouple the diffusion problem from the
radial dynamics and approximate the time derivative as the average rate of change of n,
across the previous time step. This decoupling is based on the assumption that aqueous
diffusion is typically slow relative to bubble motion. As implemented, this assumption is
justified in that it produces results very similar to those obtained with Church’s approach.
The remaining state variables are calculated in a straightforward manner from the equa-
tions in Chapter 2. After completing evaluations of y’ and execution of the Runge-Kutta
integration, the thermal substep and the convolution for n, are performed. As such, the full
step is completed to obtain the next state y**! along with updated values of the ancillary

thermal variables.

8.1.8 Model Initialization

The previous sections describe how the numerical integration progresses; however, definition

of the model implementation must also include its initialization. First, we note that three
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boundary-layer scaling constants are defined for mass diffusion inside the bubble (a,,), heat
conduction inside the bubble(a,), and heat conduction in the liquid (ar). Next, we note that

the following logical switches exist to control how heat and mass transport are estimated:

e Diffusion of non-condensable gases can be turned on or off.

e Vapor transport (i.e., phase change at the liquid-gas interface) can be turned on or

off.

e If vapor transport is on, vapor trapping (i.e., limiting of condensation by mass diffu-
sion) can be turned on or off.

e Heat transport in both the gas and liquid phases can be turned on or off.

e If heat transport is on, heat conduction in the liquid and corresponding temperature
changes in the liquid can be turned on or off.

The final aspect of model initialization is the bubble’s initial conditions. The initial radius
(R) and velocity (R) are specified directly. From there, either an equilibrium or a non-

equilibrium bubble is specified, as follows:

FEquilibrium bubble
[1] Pressure inside the bubble is calculated from the static pressure far from
the bubble and surface tension as p, = p., + 20/R.

[2] The partial pressure of vapor is assumed to be the saturated vapor pressure
(Peat), while the partial pressure of air is taken to be pu; = P; — Poat-

[3] The ideal gas equation is then used to calculate n, and n, from the associ-
ated partial pressures.

Non-equilibrium bubble

[1] The molar fraction of vapor (f,) is explicitly specified as an input.

[2] The partial pressure of vapor inside the bubble is assumed to be the satu-
rated vapor pressure; hence, p;, = p,../f.. Accordingly, the partial pressurc
of air is again p.;. = P; — Psas-

[3] The ideal gas equation is then used to calculate n, and n, from the associ-
ated partial pressures.

Note that as defined, an ‘equilibrium’ bubble will dissolve away unless no diffusion of non-

condensable gases occurs.
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3.1.4 Fluid Properties

A single bubble is modeled as an air bubble in water. Given the high temperatures and pres-
sures generated during inertial collapses, it is useful to consider the effects of any changes
in the thermodynamic properties of both the liquid and gaseous phases. As noted in Fig-
ure 3.1, the fluid properties are updated after completion of each integration time step.
The explicit equations used to calculate fluid properties as a function of the current state

variables are described in detail in Appendix A.
3.2 Numerical Performance

3.2.1 Convergence

Successful implementation of the above numerical model requires that convergence is achieved
as the error tolerance € becomes smaller. To investigate this type of convergence, the
Rayleigh collapse of a lithotripsy-like bubble was simulated using error tolerances from 1076
to 107'°. The basic radius-time curve for this bubble is shown in Figure 3.2(a). Notably,
the curves generally lie on top of one another across a range of error tolerances from 1072 to
107, The smaller time steps required by smaller tolerances should produce more accurate
results for a straightforward numerical integration. However, as discussed above, the present
model includes substep operations for both thermal variables as well as for mass diffusion
of dissolved gases in the liquid. Moreover, as described in Section 3.1.2, the convolution
integral that determines n, can be numerically troublesome for very small time steps. This
effect is clearly seen in Figure 3.2(b), where the extra noise is evident on the calculated
values of n, at the smallest error tolerance. Though this noise is noteworthy, the overall
model produces consistent results.

To explore the convergence in more detail, close-up views at the minimum volume during
collapse and at the maximum volume during the ensuing rebound are shown in Figure 3.3.
At minimum volume in parts (a) and (b), the results appear to approach convergence as
€ is reduced from 107% through 107'!. However, as € is further reduced, the timing of the
minimum volume shifts slightly. Considering the noisy behavior associated with diffusion

from Figure 3.2(b), it appears that such noise may contribute to the observed time shift of
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the minimum volume at the smallest tolerances. Moving to the maximum rebound volume
in parts (c¢) and (d), we note that the smaller tolerances in (d) produce less scatter even
though there does not appear to be a monotonic convergence to a specific value. Hence,
the model does provide an overall convergence even though a small amount of uncertainty
is persistent. This variability may be explained by a combination of three contributing
factors: (1) numerical uncertainty in the integration algorithm with its substeps, (2) sensi-
tive dynamics of a strongly nonlinear physical system as represented by the mathematical
model, and (3) limitations of machine precision. For context, the uncertainties are about
0.5 ppm in the timing of the minimum volume and 500 ppm in the maximum rebound vol-
ume. Considering the nature of the scaling model developed here, this convergence behavior
is deemed to be suitable. Unless otherwise noted, a tolerance of 10~° was used in model

calculations presented in this effort.

3.2.2 Other Characteristics

Aside from numerical convergence characteristics, other observations of model stability and
performance have been noted. First, with the scaling model for heat transport, it was found
that numerical performance is much better when heat conduction and temperature changes
in the liquid are enabled. More specifically, in the absence of liquid heating, the model re-
quires extremely small step sizes and cannot effectively integrate through a violent collapse.
This behavior can be explained by recognizing that a fixed liquid temperature can lead to
an overprediction of the temperature gradient in the gas during collapse. Through Equa-
tion (2.34), the overestimated temperature gradient leads to an enhanced coupling of the
radial dynamics with the heat transport, which is treated as a substep to the Runge-Kutta
integration. Because the thermal variables are not directly integrated as state variables,
very small steps are required to enable reasonable convergence during the thermal substep.
Although the iteration limit of 10 is often exceeded during violent collapses, the presence
of liquid heating renders the estimation of temperature gradients much more consistent,
thereby minimizing relative errors in the state variables and enabling integration to proceed

with larger steps.



48

A second observation involves use of the Plesset-Zwick model for the thermal substep.
Because the formulation for this heat transport model is analogous to that for diffusion of
non-condensable gases, the same numerical challenges apply. In particular, a singularity
in the convolution integral when 7., = 7’ leads to instabilities when the step size is small.
Unfortunately, the violent collapses associated with SWL and HIFU require small time steps
through which the Plesset-Zwick solution cannot be successfully integrated with the scheme
adopted here. While the Plesset-Zwick approach is only used for more mild collapses, results
from such a mild collapse can be used as a comparative standard for the scaling model. Such

comparisons are considered further in the next chapter.
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Figure 3.1. Schematic of the numerical algorithm implemented for each Runge-Kutta time step.
The annotated numbers indicate equations from Chapter 2. Note that the blue numbers refer to
an implementation of the Plesset-Zwick model for determining the liquid temperature at the bubble

wall T,.
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Figure 3.2. Sample model results for a Rayleigh collapse that simulates a lithotripsy bubble. The
following model parameters were used for a non-equilibrium bubble: T, = 20°C, initial radius
Ry = 1.2 mm, initial velocity R = 0, initial vapor fraction f, = 0.999, a,, = 0.2, a - § = 0.5,
ar = 1.3. The scaling model (rather than the Plesset-Zwick model) was used for heat transport.
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Figure 3.3. Model results demonstrating numerical convergence as a function of the error tolerance
parameter e. The bubble minimum radius at the end of collapse is shown in (a) and (b), while the

maximum radius during the subsequent rebound is shown in (¢) and (d).

were the same as those for Figure 3.2.

The model parameters
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Chapter 4

MODEL PREDICTIONS

As noted in the introduction, the bubble model is intended to elucidate both the me-
chanical and thermal roles played by vapor in the context of a single collapse and rebound.
Given the formulation presented in Chapter 2, the relevant model parameters define the
boundary layer thicknesses: a,, scales the diffusive gradient inside the bubble to control
the mechanical effects of vapor trapping; a, and a, scale the temperature gradients in the
gas and liquid phases, thereby affecting the thermal behavior. Based on this formulation,
all three parameters are not explicitly defined even though they should remain on the or-
der of 1. To define these parameters, the strategy here involves the use of other model
results to identify a, and ar, while experimental data from the ensuing chapters assist in
the ultimate determination of a,,. Accordingly, this chapter includes an initial section to
tune the thermal scaling parameters, a subsequent section to test model predictions against
other published models, and a final section in which model predictions elucidate the roles

of various damping mechanisms in order to guide experiments.

4.1 Determining the Thermal Model Parameters

4.1.1 Thermal Boundary Layer in the Gas

To tune the thermal boundary layer scaling in the gas, a specific test case was considered for
which detailed numerical results are readily available. More specifically, Preston®? imple-
mented a ‘gold standard’ model of a gas-vapor bubble and explicitly solved for the spatial
profiles of the thermal and diffusive variables. Moreover, he presented results for a test case

in which a bubble was excited by the following tensile Gaussian pressure pulse:

t—1\"
Pac = —Po A exp | — . (4.1)
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Here, p, is atmospheric pressure, A = 0.985, ¢, = 1.01 x 107* s, and t, is an arbitrary
time offset. In addition, the test case assumed a gas-vapor bubble that was initially at rest
with radius R, = 40.3 pm and surrounding temperature T,, = 298°K. Figure 4.1 shows
radius-time curves from Preston’s model (top) and from the present model (bottom). In
the present model, the parameters used were a,, = 0.2 and a, = 0.5; moreover, the Plesset-
Zwick formulation was used for heat transport in the liquid along with a slightly smaller error
tolerance of 107%. In comparing these curves, it is immediately apparent that the bubble
rebounds possess less damping in the Preston model. This behavior can be attributed to

Preston’s use of a Rayleigh-Plesset model that does not account for liquid compressibility.

To evaluate the scaling a, = 0.5, we compare the calculated boundary layer thickness
with the profiles presented by Preston. Preston’s results at the time points indicated in
Figure 4.1 are reproduced in parts (a)—(e) of Figure 4.2. In part (f) of this figure, the results
from the present model are plotted for all times. Note that the boundary layer thicknesses
were normalized relative to bubble radius. As indicated for each of Preston’s plots, an
approximate boundary layer thickness based on a constant gradient can be interpreted
graphically. Comparing these estimated thicknesses with the marked red circles in part (f),
the scaling ay = 0.5 provides a reasonable estimate of the temperature gradient throughout
the collapse/rebound cycle. This scaling for heat conduction in the gas phase will be used

in subsequent calculations unless stated otherwise.

4.1.2  Thermal Boundary Layer in the Liquid

To tune model behavior with regard to heat transport in the liquid, calculations using the
Plesset-Zwick substep were compared to results from the scaling approach. In the scaling
model, the impact of the boundary layer thickness as controlled by ar can be interpreted
relative to the implicit boundary-layer assumptions of the Plesset-Zwick convolution. In
this context, the Plesset-Zwick formulation was treated as a standard solution from which
a particular choice of ar could be justified. As a first step in this comparison, the results
produced by the Plesset-Zwick substep were independently tested against published results.

Then, the aforementioned test case used by Preston was simulated with both modeling



54

Figure 4.1. Radius-time curve for the ‘Preston’ bubble,3? as reproduced from Figure 2.3(a) of the
referenced dissertation [top] and as simulated by the present model [bottom]. The labeled points
denote times at which spatial profiles of temperature are provided. Note that the time and radius
are shown in nondimensional coordinates in the top plot. For the present model, the Plesset-Zwick
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formulation for heat transport in the liquid was used with an error tolerance of € = 1078,
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Figure 4.2. Spatial profiles of temperature inside the ‘Preston’ bubble3? for various time points

labeled in Figure 4.1.

Parts (a) through (e) are reproduced from Figure 2.4 of the referenced

dissertation. On these plots, red and blue construction lines are overlaid on the original plots to
approximate boundary layer thicknesses with constant temperature gradients. Moreover, the plotted
radial scale from O to 1 in the gas corresponds to the center of the bubble to the bubble wall at

r = R. Part (f) depicts the boundary layer thickness predicted by the present model.
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approaches to assist in the determination of a;.

To test the Plesset-Zwick approach used in this effort, we considered calculations per-
formed by Plesset and Zwick™ for the growth rates of vapor bubbles in superheated water.
Although they adopted the same formulation of the problem as used both in their prior
paper™ and in the ‘Plesset-Zwick’ substep here, their relevant calculations invoked two
additional approximations. More specifically, Plesset and Zwick derived asymptotic expres-
sions both for the initial, rapid bubble growth that is limited by the inertia of the liquid
and for the subsequent growth that is limited by the rate of heat transfer to the bubble.
Results of these calculations are shown in Figure 4.3(a). In part (b) of the same figure, cal-
culations from the present model are plotted. These calculations were executed for a pure
vapor bubble with an initial radius of 20 ym and an error tolerance e = 10~°® to minimize
singularities in the convolution integral. Note that in both plots, the curves are artificially
separated in time for viewability.

In comparing these plots, it is evident that the present model predicts faster bubble
growth. This discrepancy can be interpreted to mean that the thickness of the thermal
boundary layer in the liquid is underpredicted by the Plesset-Zwick substep used here.
Indeed, this behavior is expected given the well understood ‘high-frequency’ limit™ that
implicitly governs the zeroth-order convolution. That is, the convolution solution is asymp-
totically valid only at high frequencies for which the boundary layer remains thin. However,
for the type of bubble responses plotted in Figure 4.3, the extended duration of growth leads
to evolution of a significant thermal boundary layer whose thickness limits both the heat
flux into the bubble and its corresponding growth rate. Although the present model with
the Plesset-Zwick substep does not fully capture the long-term evolution of the thermal
boundary layer in the liquid, this behavior is understood. Moreover, for a single collapse
a rebound over which the ‘high-frequency’ approximation remains valid, the Plesset-Zwick
model should provide physically meaningful results with regard to the thermal boundary
layer.

Having gained confidence in the performance of the Plesset-Zwick substep, we then used
its results to determine a suitable scaling factor ar. Using the same Preston bubble from

the previous section, the liquid temperature at the bubble wall calculated with the Plesset-
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Zwick substep was compared to the temperature calculated with various scaling values a.
Calculated temperatures are plotted in Figure 4.4(a). Noting the numerical noise intro-
duced by the convolution, it is apparent that a scaling of a; = 1.3 produces a peak liquid
temperature that matches the convolution solution quite closely, even though the peak tem-
perature occurs a fraction of a microsecond later in all of the scaling calculations. Further
comparison of these curves raises two salient points. First, the Plesset-Zwick substep pre-
dicts a noticeably higher liquid temperature during the bubble rebound (i.e., after the peak
temperature was achieved). This result can be explained by the nature of the convolution
solution—such a solution has a ‘memory’ of the bubble history such that the nearby liquid
possesses a thermal mass. In contrast, the scaling solution algebraically solves for the liquid
temperature based on the gas temperature and the concomitant heat and mass transfer at
the boundary. Because the scaling approach does not explicitly account for thermal mass in
the liquid, the temperature drops relatively quickly based on the very fast radial dynamics
during the rebound. The second observation from Figure 4.4(a) involves the evident discon-
tinuities in the liquid temperature. These discontinuities are an artifact of the time scale
used to define the boundary layer thickness dr [see Equation (2.55)]. As the temperature
inside the bubble exceeds the critical temperature, phase change no longer occurs and the
condensation time scale becomes irrelevant. Although the presence of such a discontinuity
is clearly not physically realistic, this type of detail is beyond the intended scope of the
scaling model. Consequently, the discontinuity is deemed acceptable and ar was calibrated
accordingly.

Although it is also possible to compare the temperature predictions for the present model
to those from Preston’s work, such a comparison is difficult for several reasons. In particular,
Preston’s model differs in three significant regards: (1) liquid compressibility was not taken
into account, (2) fluid properties were not changed as a function of the local thermodynamic
state, and (3) phase change at supercritical temperatures was not suspended. Ultimately,
a peak liquid temperature of about 335°K was obtained by Preston as opposed to the
416°K predicted here. It is likely that reasons (1) and (2) listed above account for much
of this discrepancy. Given these considerations, tuning the scaling factor ar by comparison

of the scaling and Plesset-Zwick substeps in the present model is more appropriate than
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Figure 4.3. The growth rates of vapor bubbles are plotted at several superheated temperatures.
Part (a) is reproduced from a paper by Plesset and Zwick. In (b), analogous results from the
present model are plotted, where the Plesset-Zwick convolution was used to model heat transport
in the liquid. Note that in both plots, each curve is offset by 1 ms for clarity.

attempting a direct comparison of the scaling model with Preston’s model.

4.2 Benchmark Tests

In order to test the present model, direct comparisons with other published models is useful.
To this end, models of sonoluminescence bubbles and lithotripsy bubbles both provide
results regarding the thermodynamics of a single, violent collapse. In the next sections,
such comparisons are made to gain an understanding of the performance of the scaling

model implemented here.
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Figure 4.4. Heat transport in the liquid was explored with the present model, comparing the
Plesset-Zwick formulation with the scaling approach. In (a) the temperatures at the bubble wall are
compared, while a corresponding boundary layer thickness is plotted in (b).

4.2.1  Sonoluminescence Bubbles

Although numerous models of sonoluminescence bubbles have been published, a detailed
comparison against all of these models is not the objective here. Rather, we select a partic-
ular model that addresses the essential features of heat and mass transfer.®® In this work,
Storey and Szeri implemented one of the most complete models in the literature for violent
spherical collapses. Here, we consider ‘Case IT’ analyzed by Storey and Szeri, for which
chemical reactions were neglected. Simulations involved a 4.5 um bubble in 298°K water,

while the acoustic excitation was a sine wave with a frequency of 26.5 kHz and an amplitude

of 1.2 bar.

Simulation results for bubble radius and vapor content inside the bubble are presented
in Figures 4.5 and 4.6. In both figures, Storey and Szeri’s plots are provided in part (a),
while part (b) comprises results from the present model. In the present model, a, = 0.5
and a; = 1.3 were used, while a,, = 1.3 was found to provide the best fit for vapor content.
From the radius-time plots, both models predict essentially similar behavior with two subtle
differences: the maximum radius predicted by Storey and Szeri is slightly larger, while the

present model exhibits higher damping of the rebounds. Overall, the radius-time curve
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Figure 4.5. Comparison of radius-time curves for a sonoluminescence bubble. Part (a) is reproduced
from the work of Storey and Szeri,?® while (b) is from the present model with as = 0.5, ap = 1.3,
and a,, = 1.3. The dashed lines in (a) are overlaid on the reproduced plot in order to assist in
reading specific values.

was found to be insensitive to a,, ar, and a,,. The discrepancy in maximum radius is
likely explained by the use of different static pressures (in the present model, 1.013 bar
was used). The damping of rebounds can be considered to be a combination of thermal
and acoustic damping. Considering Figure 4.6 for the vapor content, it appears that both
models treat vapor trapping similarly. Hence, additional damping in the present model
may come from differences either in heat transport (note the consideration of argon versus
air), or in the gas equation of state (internal pressure affects acoustic damping), or both.
Although Storey and Szeri simulated an argon bubble as opposed to an air bubble, a loose
comparison can be drawn with regard to the maximum temperature obtained during the
primary collapse. Storey and Szeri calculated a peak temperature of about 9,000°K at the
bubble center, while the present model calculates a peak average temperature of about
3,600°K. The higher temperature from Storey and Szeri should be expected on the basis
of the lower thermal conductivity of argon as well as the reporting of a center temperature

rather than an average temperature.
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Figure 4.6. Comparison of the calculated number of vapor molecules inside a sonoluminescence
bubble. Part (a) is reproduced from the work of Storey and Szeri,3® while (b) is from the present
model.

4.2.2 Lithotripsy Bubbles

Two relevant models from the literature simulated lithotripsy bubbles. Sapozhnikov et al.®
did not consider heat or vapor transport, but extensively analyzed the diffusion of non-
condensable gases. Separately, Matula et al.*® considered heat and vapor transport, though
they did not address heating in the liquid. Calculations from both of these models are

discussed below.

Sapozhnikov et al. explored how static pressure and initial bubble radius affect the
rectified diffusion of non-condensable gases for bubbles excited by an analytic shock wave.

The analytic shock wave was calculated as

p= A2 cos (2w ft + 7/3) (4.2)

where A = 50 MPa is the peak positive pressure, @ = 9.1 x 10° rad/s, and f = 83.3 kHz.
The published results from Sapozhnikov et al. are reproduced here in Figure 4.7(a). For

comparison, analogous calculations from the present model are provided in part (b) of the
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figure. To generate these results, the present model considered gas-vapor bubbles with
a,, = 0.1 for minimal vapor trapping. In addition, the ambient temperature T,, was taken
as 296.2°K to match Henry’s constant as used by Sapozhnikov et al. It is clear from these
plots that both models produce essentially the same results with regard to the change in
equilibrium radius induced by diffusion. Accordingly, we conclude that the algorithmic

simplification for diffusion as described in Section 3.1.2 is warranted.

Moving to the other model,?® vapor trapping and heat transport in the gas were included
for lithotripsy bubbles. They used the above equation for an analytic shock wave (4.2)
[A = 33 MPa, a = 3.5 x 10° rad/s, f = 50 kHz|] and predicted bubble responses using
scaling parameters similar to those used in the present effort. Exemplary results from
their model are shown in Figure 4.8(a) and 4.9(a), while parts (b) of these figures provide
analogous results from the present model. All model predictions assumed an initial bubble
radius of 4.5 ym and an ambient temperature of 298°K; in the present model, vapor trapping
was controlled by setting a,, = 0.3. From the aforementioned figures, we note that while the
radius-time curves agree well, the vapor and non-condensable gas content do not. Regarding
non-condensable gases, the present model predicted less diffusion into the bubble (by about
an order of magnitude in gas molecules). Similar to the approach used here, Matula et
al. employed a convolution solution for diffusion;” hence, there is no clear explanation for
this discrepancy between models unless a much different Henry’s constant was used. As
for the vapor curve in Figure 4.9, a qualitative difference between models is apparent. The
vapor content ‘bounces’ during bubble rebounds in the present model, while it appears
to level off in steps in the referenced model. This step-like shape can be attributed to
additional damping that is not associated with acoustic radiation. Because Matula et al.
considered chemistry effects, we infer that the shape of the vapor curve is likely influenced by
damping from chemical reactions. Moreover, it is instructive to note that chemical reactions
and heat transfer appear in the pressure modulation equation (2.34) as similar energy-sink
terms. Overall, this comparison of models implies that similar radius-time curves can be
achieved with both, although the balance of damping mechanisms appears to be different

in each model.
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Figure 4.7. Comparison of the rectified diffusion of non-condensable gases for bubbles excited by
a lithotripter shock wave. Part (a) is reproduced from Figure 3 in a paper by Sapozhnikov et al.,!°
while part (b) is from the present model. In these calculations, the liquid was initially assumed to
be saturated with dissolved air at 1 bar; hence, the initial conditions were 50% and 33% saturated
at 2 and 3 bars, respectively.
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Figure 4.8. Vapor-trapping behavior in bubbles exposed to a lithotripter shock wave. Radius-
time curves are compared for (a) calculations performed by Andrew Szeri (plot reproduced from
reference®), and (b) calculations from the present model with a,, = 0.3.
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Figure 4.9. Comparison of the vapor and gas content of lithotripsy bubbles. The plot in part (a)
is reproduced from the aforementioned paper,® while part (b) shows calculations from the present
model.

4.3 Energy Loss Mechanisms for a Collapsing Bubble

In previous sections of this chapter, the model formulated and implemented in this effort
has been exercised and compared against other published models. First, the scaling pa-
rameters governing heat transport (ay, ar) were determined by consideration of Preston’s
calculated temperature profiles in the gas®® along with consideration of the Plesset-Zwick
convolution. Having discerned scaling factors of ay = 0.5 and a; = 1.3, we compared predic-
tions with results from other models in the literature for sonoluminescence and lithotripsy
bubbles. These comparisons demonstrate that the present model captures the basic fea-
tures of heat and mass transport for a single bubble collapse. However, these test cases also
suggest a complex interaction of thermal, mechanical, and perhaps even chemical damping
mechanisms that affect the radial dynamics.

To help sort out these mechanisms, we now consider two distinct types of collapse: a
Rayleigh collapse of a millimeter-sized bubble and a driven collapse of a micron-sized bubble.
These collapses can essentially be classified as lithotripsy bubbles and sonoluminescence
bubbles, respectively. For the Rayleigh collapse, the relative effects of mass diffusion of

vapor (a,,) and thermal coupling of vapor with the liquid (ar) were explored using the
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scaling model [see Figure 4.10(a)]. As is evident from the plotted curves, the rebound is
controlled primarily by diffusive trapping of vapor inside the bubble. Such vapor trapping
cushions the collapse, thereby affecting the evolution of pressure inside the bubble as well
as the radiated pressure. In this manner, most of the energy loss is mechanical during a
Rayleigh collapse that resembles a lithotripsy bubble. In addition, the diffusion of vapor is
influenced by the ambient liquid temperature, as implied by part (b) of this figure [though
not shown in (b), radial dynamics remain insensitive to ar at higher temperatures|. As an
interesting aside, the prominence of mechanical over thermal vapor effects does not apply
to sonoluminescence bubbles, as demonstrated by Figure 4.11.

Given the above discussion, the rebounds of lithotripsy bubbles are essentially controlled
by acoustic radiation losses. Accordingly, these rebounds can be studied to elucidate diffu-
sion behavior among vapor and non-condensable gas molecules. Indeed, the experimental
work discussed in the next chapters was aimed at understanding this diffusion behavior. In
terms of the modeling discussed to this point, diffusive vapor trapping can be understood
through the scaling parameter a,,. As suggested by Figure 4.10(b), one tool that may be
used to experimentally affect vapor trapping is the bulk temperature of the liquid. Simi-
larly, the concentration of dissolved gases in the liquid may affect the diffusive gradients of
gas and vapor inside the bubble. Overall, these model predictions suggest an experimen-
tal approach whereby vapor trapping is studied by observing the collapse and rebound of
lithotripsy bubbles under different test conditions in the liquid.

The aforementioned experimental strategy relies on the distinction of mechanical (a,,)
and thermal (ar) aspects of vapor transport. However, in addition to these vapor trans-
port processes, other damping mechanisms also exist. Although chemical reactions are not
expected contribute significantly to the energetics of collapse,® heat conduction driven by
compressional heating of the gas phase (a,) may be significant. Hence, an implicit as-
sumption in the experimental strategy described above is that changes in the bulk liquid
temperature and dissolved gas concentration will primarily affect vapor transport processes
as opposed to damping processes associated with compressional heating and/or chemical

reactions.
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Figure 4.10. Comparison of damping mechanisms for the Rayleigh collapse and rebound of a
millimeter-sized lithotripsy bubble. Radius-time curves are plotted in (a) to show the effects of
scaling parameters for mass diffusion inside the bubble and temperature changes in the liquid.
Additional curves are shown in (b) to elucidate the impact of ambient liquid temperature.
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Figure 4.11. Comparison of damping mechanisms for the collapse and rebound of a sonolumines-
cence bubble. The same radius-time curves are plotted for (a) an entire acoustic cycle, and (b) a
zoomed perspective of the rebound. The curves compare the effects of scaling parameters for mass
diffusion inside the bubble and temperature changes in the liquid. Except as explicitly noted in the
legend, simulation conditions were the same as those from Section 4.2.1.
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Chapter 5

EXPERIMENTAL SETUP

In the preceding chapters, a model has been developed for simulating the collapse and
rebound of a spherical bubble. The model uses a scaling approach to address heat and mass
transport effects, as embodied by the parameters for scaling boundary layer thicknesses:
@y G, and ar. In this chapter, an experimental approach and setup are described for
testing the role of diffusive vapor trapping, as represented by a,,. As yet, this parameter
remains unspecified, while the thermal scaling parameters were determined in Chapter 4.
Broadly, the intent of these experiments was to collect data that characterize the collapse
and rebound behaviors of bubbles. More specifically, such data were meant to provide
insight regarding values of a,, under various test conditions that are relevant to SWL and

HIFU.

5.1 Overview of Experimental Design and Setup

The basic strategy was to use a lithotripter shock wave to excite bubble collapses that could
be experimentally observed and characterized. Given a shock wave such as that modeled
by Equation (4.2), the tensile tail of the shock will excite an extended bubble growth fol-
lowed by an inertial collapse. Such a response is illustrated by a sample model calculation
in Figure 5.1. Because the shock wave ideally lasts for less than about 15 us, the collapse
from maximum radius R,,,,. should be undisturbed, thereby representing a Rayleigh col-
lapse such as those depicted in Figure 4.10. In many ways, the collapses of lithotripsy
bubbles are similar to collapses of laser-induced cavitation bubbles that were discussed in
the introduction. However, laser-induced bubbles are created by rather complicated physics
assoclated with the optical breakdown of water, subsequent plasma recombination, and pre-
sumably thermal effects that drive bubble growth to its maximum radius. Consequently,

the prevailing thermodynamic conditions of the bubble at the start of collapse are not clear.
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In contrast, the growth of lithotripsy bubbles is driven only by a tensile acoustic pressure
and can be simulated using common modeling approaches such as that used in this effort.
Moreover, if the initial bubble size is much smaller than R,.,. ., the dynamics of collapse
from R,,.., will be insensitive to the initial radius prior to shock-wave arrival.

Given that initial size need not be explicitly controlled, lithotripsy bubbles provide an
excellent platform for studying the dynamics of inertial collapses. Characterization of these
dynamics can be achieved by measuring the four parameters labeled in Figure 5.1: R,....1,
R,az2, 1, and t,. The measurement of maximum radius before collapse provides information
regarding the potential energy of the bubble. Together, the maximum radius after collapse
and the collapse times provide overlapping information that describes the amount of energy
retained through collapse. The overarching goal was to acquire these measurements for
lithotripsy bubbles under various conditions. In particular, by conditioning the water at
various temperatures and levels of dissolved gases, the dynamics of collapse were investigated
as a function of different vapor-gas conditions inside the bubble. As discussed in Section 4.3,
these conditions and the corresponding mass diffusion represented by a,, were expected to
alter the collapse and the observed rebound.

To collect the aforementioned measurements, a high-speed camera was used in conjunc-
tion with passive cavitation detectors (PCDs). The concept of using confocal PCDs to
identify the timing of bubble collapse events is based upon the setup employed by Cleve-
land et al.®® A functional schematic of the experimental setup is depicted in Figure 5.2.

Details of the various setup components are described in detail in the following sections.

5.2 APL-UW Lithotripter

The APL-UW lithotripter used in this effort was designed to simulate the Dornier model
HM3. Although this lithotripter exhibits significant shot-to-shot variability as an electro-
hydraulic device, it was carefully characterized when designed and built.*? In this device, a
spherical shock wave is generated by a high-voltage discharge across electrodes. Because the
discharge occurs at one of the geometric foci (F1) of an ellipsoidal reflector, the spherical
shock becomes focused at the other geometric focus (F2). The focal region of the APL-UW

device is approximately ellipsoidal, where the —6 dB level curves for peak positive pressure
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Figure 5.1. Sample radius-time curve for a bubble excited by a lithotripter shock wave.
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have approximate dimensions of 6 cm in length and 1 cm in width. Input voltages from
12-24 kV produce focal shock waves with peak positive pressures between 25 and 40 MPa

and peak negative pressures between —7 and —12 MPa.

5.3 Passive Cavitation Detectors

To detect the collapse times of individual bubbles, two broadband passive cavitation de-
tectors (PCDs) were used. These detectors were fabricated as prototypes at the Center
for Industrial and Medical Ultrasound (Applied Physics Laboratory, University of Wash-
ington). In particular, the PCDs comprised a sheet of polyvinylidene fluoride (PVDF) film
that was 25 pm thick and conformed to a spherical geometry. During construction, the
PVDF filim was stretched in place by an optical lens, while epoxy was poured on the back
side to maintain the spherical shape after curing. The epoxy and a polycarbonate block
served as acoustic absorbers to minimize reverberations in the device itself.

The PCDs functioned as spherically focused broadband receivers; both have an aper-
ture of 50 mm, while different radii of curvature provide focal distances of approximately
10 cm and 15.4 cm. The —6 dB focal boundaries were characterized at 3.6 MHz as ellipses
with the following length x width characteristics: 17 mm x 1.2 mm for the PCD with
10 em focal length, and 47 mm x 2 mm for the PCD with 15.4 cm focal length. Geometric
characterization of the PCD foci was accomplished by wiring the PCDs as acoustic sources
and measuring the output along and transverse to the acoustic axis. These measurements
utilized a ‘lipstick’ hydrophone (Model GL-0150-1A, SEA/Onda, Sunnyvale, CA). For ob-
serving bubbles, PCDs were wired as receivers with a built-in preamplifier and were aligned
confocally with the lithotripter and with one another. As receivers, the PCDs possess an
effective bandwidth up to about 10 MHz. Photographs of a PCD on a table and of PCD
alignment in the test tank are shown in Figure 5.3. With the pointers in place as shown in
part (b) of the figure, photographs were captured with the high-speed camera to document
the PCD locations.

Data from the PCDs were collected on a Tektronix TDS744A digital oscilloscope with
a sampling frequency of 50 MHz, DC coupling, 20 mV /division sensitivity, and 500 in-
put impedance. One PCD was routed through an analog high-pass filter set at 200 kHz
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(Krohn-Hite Model 3202) before being digitally captured on the oscilloscope. This imme-
diate filtering enabled easier interpretation of the PCD signal for immediate evaluation of
individual data points. All saved PCD data were downloaded from the oscilloscope over a
GPIB connection using a personal computer and a custom LabVIEW program (National
Instruments, Austin, TX).

PCDs with both of the aforementioned geometries were used during testing. Although
the PCDs were found to be quite robust overall, several failures did occur. Consequently,
some data were collected using two long-focus PCDs, other data using both a short- and a
long-focus PCD, and yet a few other data points with a single long-focus PCD. Ultimately,
the small focal regions and broadband characteristics of these PCDs enabled the identifica-
tion of individual collapse events from a single PCD trace. By analyzing two PCD traces,
even relatively crowded cavitation fields could be evaluated to assign individual collapse
events to specific bubbles in high-speed photographs. To assist the correlation of PCD data
to photographs, high-speed images of the alignment pointers in situ were acquired.

The preceding description of PCDs in this section represents the final evolution of the
measurement technique. Initial attempts at these measurements used confocal piezoelec-
tric PCDs.®" Initial work with this setup demonstrated the limitations of the piezoelectric
transducers.® The lack of spatial and temporal specificity proved to limit their utility for

the current experiment, leading to the adoption of the PVDF devices.
5.4 High-Speed Photography

An Imacon 200 high-speed camera (DRS Technologies, Parsippany, NJ) was used to capture
images of bubbles both before and after the primary collapse at time ¢, from Figure 5.1. The
camera is capable of capturing a sequence of 14 images at rates up to 200 million frames per
second using seven separate charge-coupled devices (CCDs). Each image frame comprises
980 pixels in height x 1200 pixels in width, where each pixel is an 8-bit grayscale value.
The captured images served two purposes: spatial characterization of the cavitation field
and measurement of the radii R,,.,; and R,,.... First, the photographs enabled selection
of data for which single, isolated bubbles were identified and correlated with PCD traces.

This selection was very important in that many shock waves produced either no significant
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(a) (b)

Figure 5.3. Photographs of (a) a passive cavitation detector and (b) passive cavitation detectors
as fixtured and aligned in the lithotripter tank using pointers.

bubbles (in the absence of nuclei) or dense clusters of bubbles. Moreover, when sparse groups
of bubbles were present, the photographs allowed correlation of pressure spikes in the PCD
data to specific bubbles. Second, images of target bubbles were analyzed to estimate bubble
radii. Details of both the optical setup used to capture the images as well as the steps taken

to calibrate radius measurements arc described in the next two sections.

5.4.1 Optical Configuration

The physical setup of the camera and lighting are illustrated in Figure 5.2(a). Bubbles were
backlit using light from a non-collimated flash source (Photogenic PowerLight 2500DR,
Bartlett, IL). Also, a single sheet of white office paper was taped to the lithotripter tank
to diffuse light from the flash. On the camera side, a 105 mm Nikon lens with a PK-13
extender ring was used. The f/stop was set at f/2.5 to allow passage of maximum light.
This combination resulted in a standoff of about 17.7 in. between the front edge of the
105 mm lens and the acoustic axis of the lithotripter. Moreover, the acoustic axes of the
PCDs were also kept in the optical plane of focus. The remainder of the optical settings
were adjusted through the software used to control the camera. As such, the internal iris

was set at f/2, the exposure duration was set at 1 us, and the gain for each CCD was set



73

Figure 5.4. Photograph of a ruler at a 45° angle to depict depth of field. The dark pointer
in the photograph indicated the acoustic focus of the lithotripter; the ruler mark at 16 cm was
approximately above the tip of the pointer.

at zero (the lowest available level).

To quantify the depth of field of this setup, an image of a ruler angled at 45 degrees
is provided in Figure 5.4. In this photograph, the mark for 16 cm was approximately at
the center of the focal plane. The marks at 15 and 17 cm are noticeably more blurry,
though still visible. Accordingly, we conclude that the depth of focus was greater than
2 cm/ v/2 = 1.41 cm. Given that the —6 dB focal region of the lithotripter was stated above
to be about 1 cm transverse to the acoustic axis, it is reasonable to expect that any bubbles

in the field of view that were excited by the lithotripter would be visible.

5.4.2 Calibration of Bubble Radius

To calibrate measurements of bubble radius from high-speed photographs, an image pro-
cessing algorithm was developed and calibrated. The algorithm consisted of the following

steps:

(1) Interactive selection of a target bubble for analysis. A target square of 150 x 150
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pixels centered at a user-specified ‘click’ was taken for further processing.

(2) Target pixels were segmented by applying a threshold to identify the edges of the
bubble as dark pixels. Due to variability in lighting within frames as well as between
frames, the segmentation could not be reliably executed by applying a constant thresh-
old. Rather, pixels in the target square were analyzed using the ‘graythresh’ function

in MATLAB (The MathWorks, Natick, MA) to statistically identify a threshold level.
This level was then multiplied by an empirically determined factor of 0.9.

(3) Because the segmented image did not always represent a singly connected region, a
morphological closing operation was applied to the segmented binary image. The
closing utilized a structuring element in the shape of a ‘plus’ sign (3 pixels x 3 pix-
els). After this operation, only the largest pixel region below the threshold value was
retained.

(4) A Sobel operator was applied to the binary image for edge detection. The resulting
image was a binary outline of the dark pixels that correspond to the bubble edges.
Such an outline was a convenient output to be ultimately saved.

(5) The diameter of the bubble was measured in pixels from the outline image by taking
the maximum minus the minimum pixel coordinates along the horizontal and vertical
axes. The image was then successively rotated by 10 degrees before repeating the
diameter measurements. In this fashion, 18 diameter measurements were acquired in
10-degree increments. The actual diameter was taken as the median of collected mea-
surements. Note that the median was used to limit the impact of spurious variations.

Accordingly, the image processing provided a measurement of bubble diameter in pixels. To
calibrate this value to physical units, photographs of spheres of known size were captured.
More specifically, both glass and nylon spheres were photographed in water, with the same
optical configuration described above (see Figure 5.5). The motivation for considering
both materials was to use the nylon spheres as a control while investigating the impact

of refraction at the glass-water interface.

Both types of spheres had nominal diameters of 3/32 in. Because the photographs were
captured by dropping a series of spheres into the camera’s field of view in the focal plane,
specific images were not matched with explicit measurements of the corresponding sphere.
However, a micrometer with a precision of 0.0001 in. was used to measure the diameters of
a sample of 20 spheres of each material. These measurements are summarized in Table 5.1.
Given that a scaling of 53.2 pixels per millimeter was read directly from a photograph
of a ruler, this value was applied to diameter measurements of spheres based on image

processing. The results are listed in Table 5.1 and plotted in Figure 5.6.
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(a) (b)

Figure 5.5. Photographic frames captured with the high-speed camera that show (a) a glass sphere
and (b) a nylon sphere. The dark bar in each photo is the lithotripter pointer and was used to aid
alignment of the spheres in the camera’s focal plane. In conjunction with a grayscale thresholding
algorithm, these photographs enabled calibration of spherical size since both types of spheres had a
known radius near 1.2 mm.

In the table, standard deviations are calculated as percentages of mean radius, while
the estimated error of the image processing algorithm is referenced to the micrometer mea-
surements. Also, noting the presence of 14 frames per sequence, the listed number of
sequences/frames indicates that several frames were omitted from the statistical analysis as
outliers with poor image segmentation characteristics. The failures of the processing algo-
rithm in these few frames were caused either by impingement of the bubble on the boundary
of the 150x150 pixel target region or by a lack of a singly connected segmentation image.
Such artifacts were obvious in the data and did not propagate through analyses of actual
bubbles. Ultimately, these data demonstrate that the image processing algorithm effectively
adapted to variable lighting conditions. Moreover, because the physical scaling read from
an image of ruler was consistent with the actual sphere diameters to within about 2% for
both materials, it is reasonable to conclude that light refraction and diffraction effects were
negligible for images of spheres with about a 1 mm radius. Consequently, a scaling of 53.2
pixels/mm was used for all image processing, while an accuracy of about 2% was expected

for measurements of bubble radii.



76

Table 5.1. Measurements of sphere diameters.

Micrometer Measurements

Mean Radius Standard
(mm) Deviation
Glass Spheres 1.1923 0.04%
(20 measurements)
Nylon Spheres 1.1740 0.6%

(20 measurements)

Image Processing Measurements (53.2 pixels/mm)

Mean Radius Standard E
o rror
(mm) Deviation
Glass Spheres 1.217 0.5% +2.1%
(27 frames, 2 image sequences)
Nylon Spheres 1.176 0.8% +0.2%

(54 frames, 4 image sequences)

5.5 Maintaining and Measuring Water Conditions

A final component of the test setup was a water system capable of heating and degassing
about 90 gallons of water. To meet the needs of this experiment, a water system was
designed and constructed, as depicted in Figure 5.7. This system included the following

components:

¢ Liqui-Cel 4x13 membrane contactor (Membrana, Charlotte, NC) to provide a high
contact surface area for a flowing liquid, thereby facilitating gas exchange to/from the
liquid.

e Vacuubrand MZ 2C pump with ultimate vacuum rating of 6.8 torr (BrandTech Scien-
tific, Inc., Essex, CT). In conjunction with the membrane contactor, dissolved oxygen
levels below 3% of saturation were obtained in water.

e Mechanical filtration using two filters in series: a Claris series cartridge (1 gm nominal
pore size) preceding a Nexis C-series cartridge with an 2 ym absolute rating (Pall
Corporation, East Hills, NY).
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Figure 5.6. Calibrated measurements of sphere radius from a series of high-speed photographs of
(a) a glass sphere and (b) a nylon sphere. Each red ‘x’ indicates a measurement from a single frame
while the blue lines connect measurements.

e Stainless steel circulation heater with 4.5 kW capacity (Gaumer Company, Inc., Hous-
ton, TX).
These elements were connected using 3/4 in. stainless steel tubing and Swagelok tube
fittings (The Swagelok Company, Solon, OH). A 1 hp centrifugal pump was used to drive
the flow and was capable of achieving flow rates up to 10 gpm.

While this system enabled control of the water used in the lithotripter tank, water
conditions were measured and recorded in a notebook roughly every hour during testing.
First, water conductivity was measured with a Model EP conductivity meter (Myron L
Company, Carlsbad, CA). Table salt was added to tap water to reach the desired con-
ductivity of 600 uS/cm for initiating the spark. In addition, water temperature and dis-
solved oxygen content were measured using an Oxi 330i meter with a CellOx 325 probe
(WTW Wissenschaftlich-Technische Werkstatten GmbH, Wellhelm, Germany). Lastly, be-
cause temperatures above 50°C exceeded the range of the dissolved oxygen meter, such
temperatures were measured with a type K thermocouple and a Fluke 179 multimeter. To
acquire dissolved oxygen measurements at these temperatures, two approaches were used.
In the first approach, the dissolved oxygen concentration (not the saturation percentage)
was controlled to reach a level that would be consistent with the target saturation percent-

age at 60°C. During heating and cooling from 50°C to 60°C and back again, diffusion was
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minimized by covering the surface with floating polypropylene balls. The major drawback
of this approach was the substantial amount of time involved in the heating and cooling;
hence, measurements of dissolved oxygen were not temporally specific, requiring estimation
of the applicable values during the test. A second and improved approach was developed
whereby a 400 mL sample of water was collected in a plastic beaker from the surface of
the tank. This sample was immediately covered in aluminum foil to minimize the liquid
surface area and was cooled in a water bath for about 10 minutes. Then, a dissolved oxygen
measurement was acquired in terms of absolute concentration, which was later converted
to a saturation level at 60°C. Note that such a measurement required active stirring of
the sample and that measurable diffusion into such a small volume occurred within tens of
seconds. Consequently, the recorded measurement was the lowest reading achieved rather
than an equilibrium reading. Ultimately, consistent readings were obtained with the latter
approach.

A summary of the nominal conditions tested and the range of acquired measurements
for each test case is provided in Table 5.2. This matrix includes 9 test cases, including
all permutations of temperature at 20°, 40°, or 60° coupled with dissolved oxygen content
at 10%, 50%, or 85% of saturation. In general, temperature was controlled to the nominal
target £1°C. The measurements of dissolved oxygen exhibited somewhat more scatter, espe-
cially at 60°C. However, because these measurements were acquired within several inches of
the water’s surface, the actual changes at the lithotripter’s focus were likely much less (the
focus was about 18 in. beneath the surface). With the exception of Case I, the dissolved
oxygen content was controlled to the target level 5%, where these bounding tolerances are
conservative.

During the testing of Case I, an interesting phenomenon was observed. Despite dissolved
oxygen levels measured to be below saturation, quasi-static bubble growth was observed on
surfaces inside the tank. Explaining this observation requires a discussion of the path by
which the water was brought to its measured state at 60°C. First, at a temperature near
40°C, the water was degassed to achieve a saturation level of about 71%. Assuming that this
concentration was achieved by enforcing equilibrium conditions at the membrane contactor,

other gases including nitrogen, argon, and carbon dioxide were also at 71% saturation at
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40°C. To check if any of the aforementioned gases could become supersaturated at 60°C, a
relevant parameter is the ratio of solubility at 60°C to that at 40°C. Using correlations from
the CRC Handbook,** we note that this ratio is 0.68 for carbon dioxide, 0.82 for argon,
0.84 for oxygen and 0.88 for nitrogen. Because the ratio for carbon dioxide drops below
the original saturation percentage at 40°C, it is evident that supersaturation of carbon
dioxide likely explains the observed bubble growth. Although this phenomenon can be
understood through a few quick calculations, the behavior was nonetheless surprising. As a
consequence of carbon dioxide supersaturation, it was very difficult to limit the presence of
bubble nuclei for Case I. Accordingly, most of the data collected under these approximate
conditions involved the presence of many bubbles, thereby making the study of single-bubble
dynamics very troublesome. Hence, these data should be interpreted with caution.

Based on the above discussion of carbon dioxide, it is instructive to consider the extent
to which dissolved oxygen measurements consistently reflect the state of dissolved gases in
water. A cursory examination of the solubilities of argon, oxygen, and nitrogen suggests
that dissolved oxygen levels should remain representative of the solute levels of each of these
gases. Although the solubility of carbon dioxide exhibits a markedly different behavior with
changes in temperature, the scarcity of carbon dioxide in fresh air implies that these effects
are relatively minor with regard to the overall levels of gas dissolved in water. Consequently,
dissolved oxygen measurements are retained as a representative indicator of dissolved gas

content for the purposes of this effort.
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Figure 5.7. Photograph of the water system.

Table 5.2. Experimental test conditions.

Dissolved O, Content

Temperature 10% 50% 85%
Case A Case B Case C
20°C [min: 18.5°C, 7.4%)] [min: 19.5°C, 47.3%) [min: 19.7°C, 79.0%)]
[max: 19.6°C, 9.6%)] [max: 21.5°C, 50.4%]  [max: 21.4°C, 84.3%]
Case D Case E Case F
40°C [min: 39.5°C, 7.8%] [min: 39.3°C, 47.1%] [min: 38.5°C, 81.0%]
[max: 40.6°C, 10.6%] [max: 40.4°C, 49.1%] [max: 40.4°C, 83.7%]
Case G Case H Case I
60°C [min: 59.6°C, 8.5%)] [min: 59.0°C, 48.8%] [min: 58.1°C, 69.1%)]
[max: 61.6°C, 14.4%]  [max: 61.1°C, 56.2%]  [max: 61.2°C, 79.3%]
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Chapter 6
EXPERIMENTAL RESULTS

The previous chapter describes the instrumentation and physical setup used to study the
collapses and rebounds of lithotripsy bubbles. These experiments were designed to elucidate
the impact of diffusion among vapor and gas molecules on the dynamics of collapse. More
specifically, test conditions were designed to manipulate the bubble’s gas-vapor state during
collapse by varying the temperature and dissolved gas content of the ambient water. The
matrix of conditions tested is listed in Table 5.2. In this chapter, the experimental results are
presented and analyzed. First, the methodology for analyzing PCD data in conjunction with
high-speed photographs is described; also, sample data are shown for illustrative purposes.
Next, the compiled results from all collected data are presented. Finally, the results are

discussed and interpreted in the context of the model described in earlier chapters.
6.1 Data Processing and Sample Data

Observations of the collapses and rebounds of lithotripsy bubbles were made with both high-
speed photography and with passive cavitation detection (PCD). Data from both sources
were analyzed in tandem to reconstruct the behavior of a target bubble in the cavitation field
for each ‘shot.” Here, ‘shot’ refers to each collected data point, which in turn corresponds
to the passage of a single lithotripter shock wave. In the subsections below, details of the

data processing are described and sample data are presented.

6.1.1 Analysis of Image Sequences

A first step in the data processing was segmentation of high-speed image sequences using
the image processing algorithm described in the last chapter. For two separate shots, the
results of image segmentation and estimation of bubble radius are shown in Figure 6.1.

Each outlined box corresponds to the analyzed target region from the original photograph.
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Figure 6.1. Sample images of segmentation results and estimated bubble radius for image sequences
of a bubble from (a) Case A conditions [reference shot #46] and (b) Case H conditions [reference
shot #57]. For each bubble, the outlined boxes represent the target region analyzed in each frame of
the sequence—frame progression goes left-to-right, top-to-bottom. For each frame, the red tracing
denotes the segmented region corresponding to the bubble boundary, while the overlaid blue circle
represents the estimated bubble radius based on the segmentation.

Moreover, the sequence of image frames progresses from left-to-right, top-to-bottom. The
red tracing in each frame outlines the segmented region that defines the bubble boundary;
the blue circle represents the estimated bubble radius. For reference, the photographic
sequences that correspond to data in Figure 6.1 are provided below in Figures 6.2 and
6.3. In these figures, the raw photographs were modified to include time stamps as well
as highlighted ellipses that mark the —6 dB focal regions of the PCDs. These highlights

assisted in the interpretation of PCD data.

From frames 6 and 7 of the sequence in Figure 6.1(a), it is clear that a small nearby
bubble was included in the segmentation, thereby distorting the radius estimate. In such
instances, corrections to the affected frames were made manually; the segmented image
was imported into a vector graphics program to determine an approximate length scaling
between the estimated blue circle and the red tracing. From the bubble radius estimates,
radius-time curves were plotted (see Figure 6.4). Note data points of zero radius were
included at the times when bubble collapses were detected in PCD data. For reference, the

corresponding PCD traces are provided in the next section in Figure 6.5.



83

55719

Figure 6.2. Sequential images of bubbles [reference: Case A, shot #46]. Each frame includes a
time stamp, two highlighted regions, and a square box outlining a target bubble for analysis. In the
referenced time scale, the shock wave arrived at the center of the field of view at time zero. The
highlighted regions each correspond to the —6 dB sensitive region of a PCD. The box is 2.8 mm on
all sides.

6.1.2 PCD Traces

As mentioned in the last chapter, PCD data were captured on a digital oscilloscope at
a sample rate of 50 MHz. When two PCD traces were simultaneously acquired, one of
them was passed through an analog high-pass filter at 200 kHz. Because bubble collapses
inherently induced high-frequency spikes in the PCD signal, the high-pass filter ‘cleaned up’

the trace for real-time viewing on the oscilloscope. This approach aided data acquisition
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Figure 6.3. Sequential images of bubbles [reference: Case H, shot #57]. Each frame includes a
time stamp, two highlighted regions, and a square box outlining a target bubble for analysis. In the
referenced time scale, the shock wave arrived at the center of the field of view at time zero. The
highlighted regions each correspond to the —6 dB sensitive region of a PCD. The box is 2.8 mm on
all sides.

by providing immediate feedback regarding the quality of the PCD data; accordingly, data
were not saved when the PCD data could not be interpreted relative to the behavior of a
single bubble in the photographs. The saved PCD data were processed further offline, using

the following steps for each trace:

(1) The time scale was shifted to account for acoustic propagation delays, such that time
zero indicated the arrival of the shock wave at the center of the field of view of the
high-speed camera. To estimate the appropriate time shift, the following focal lengths
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Figure 6.4. Radius-time curves derived from image sequences of a bubble from (a) Case A condi-
tions [reference shot #46] and (b) Case H conditions [reference shot #57]. Each red ‘x’ indicates a
measurement from a single frame while the blue lines connect measurements. Note that measure-
ments from image frames were supplemented by the PCD data in these plots—at measured collapse
times (see Figure 6.5), a radius of zero was assumed and plotted.

were used in conjunction with the sound speed of water as a function of temperature:
276 mm for the propagation of the focused shock wave, 94.5 mm for the focal length
of the 10 ecm PCD, and 156 mm for the 15.4 cm PCD. The focal lengths of the PCDs
were adjusted from nominal values to most consistently match the bubble-collapse
timings observed in photographs.

(2) Data captured through the analog Krohn-Hite filter were deconvolved in the frequency
domain using an experimentally determined impulse response of the filter.

(3) The signals were bandpass filtered between 800 kHz and 3 MHz with a 200*"-order
finite impulse response (FIR) filter. These bandpass frequencies were chosen to main-
tain good temporal resolution for discerning the timing of individual collapse events
while removing much of the high-frequency noise.

For the shots documented above, the processed PCD traces are provided in Figure 6.5. In
these plots, the blue curve corresponds to the highlighted region going from lower-left to
upper-right in Figures 6.2 and 6.3, while the red curve is from the other PCD. The vertical
green lines denote the timing of frame acquisition for the high-speed photographs. Note
that the traces were normalized to the maximum signal level to ‘zoom in’; consequently, the
background noise appears larger when the measured collapse signal was weak. From the

figure, a persistent source of periodic noise is apparent on both blue and red curves. Upon
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Figure 6.5. Sample PCD traces corresponding to a shock wave under (a) Case A conditions
[reference shot #46] and (b) Case H conditions [reference shot #57]. In each plot, the blue and red
traces represent simultaneously acquired data from two PCDs. The plotted traces were bandpass
filtered and individually scaled such that the maximum amplitude of each signal remained less than
1. The traces were offset vertically for clarity. The time scale was adjusted such that the shock-wave
arrived at the lithotripter’s focus at time zero.

closer examination, the noise can be characterized as a 5 MHz ringing that recurred with
a frequency of about 113 kHz. This noise seems to have been caused by electromagnetic
interference from the lithotripter itself. In particular, recharging of the high-voltage power
supply after ignition of a shock wave was a likely source of the interference.

Given that the aforementioned noise is understood to be independent of cavitation ac-
tivity, the trace in Figure 6.5(a) can be easily interpreted. The dominant bubble collapse
occurred just after frame 11 from the image sequence of Figure 6.2. Moreover, the subse-
quent bubble rebound ended with another collapse about midway between frames 13 and

14.

6.1.3 Normalization of Bubble Rebounds

Using the captured image sequences in addition to the PCD data, bubble rebounds were
quantified by normalizing the rebound amplitude to the maximum radius obtained before

collapse. This normalization approach was identified and adopted independently in this ef-
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fort, though the same approach had been used previously to study asymmetric collapses. 4344

Considering the maximum radii before and after collapse as depicted in Figure 5.1, we can
express a normalized rebound radius as R,.eq.2/Rmae1- Considering that the bubble’s en-
ergy at these maxima is a potential energy due to volumetric expansion against the ambient
liquid pressure, the corresponding volumetric ratio (R,,qz.2/Rmas1)® represents the fraction

of energy retained through collapse.

In order to normalize the data for comparison of rebounds, R, ..., and R,,,. . must be
estimated. The initial maximum R,,,,; can only be estimated based on the image data and
the calibrated processing algorithm described above. However, two possibilities exist for
the rebound maximum: direct estimation based on the same image processing or indirect
estimation based upon the timing of the bubble collapses t; and ¢, from Figure 5.1. From
these collapse times, the maximum rebound radius can be approximated by assuming that
the dynamics are controlled by the inertia of the liquid and that time and maximum radius

are related by the Rayleigh collapse time of a vapor cavity.®® As such, R,,.. . is calculated

l, —h 1 Do — Dy v
Riaas = 6.1
. 2 (0.915) ( Po (6.1)

where p, is the liquid density, p, is the hydrostatic liquid pressure, and p, is the vapor

as

pressure of the liquid at the ambient temperature.

Although both methods of experimentally determining R,,,. . ideally lead to the same
result, the presence of geometric asymmetry in the bubble collapse complicates the issue.
Vogel and Lauterborn studied the collapses of bubbles near a solid boundary to elucidate
the impact of asymmetry.**** Of pertinence to the present discussion, they found that the
introduction of asymmetry lengthens the effective Rayleigh collapse time. Consequently,
use of Equation (6.1) would overestimate R,,,,. when asymmetries are present. To account
for these effects, Vogel and Lauterborn introduced a correction factor & as the ratio of the
estimated rebound maximum based upon collapse times to the actual rebound maximum.
As a function of the bubble standoff from a solid boundary, they experimentally determined
this ratio for both the initial collapse from R,,.., as well as for the ensuing rebound. For

convenience, their results are reproduced here in Figure 6.6, where k; is the ratio for the
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initial collapse and k&, applies to the subsequent rebound. These results suggest that as the
bubble collapse becomes more symmetric (as measured by increased standoff from the solid
boundary), both k, and k, approach unity. However, k, does increase significantly as the
bubble approaches the boundary and the collapse is less symmetric.

In deciding how to estimate R,,,,. from the acquired data, the merits of both meth-
ods need to be evaluated. To this end, it is instructive to first note the types of bubble
collapses that were observed. In addition to the essentially symmetric collapses and re-
bounds exemplified by the images in Figures 6.2 and 6.3, many of the collapses exhibited
clear asymmetries in the form of a visible re-entrant jet. Examples of such collapses and
rebounds are provided below in Figures 6.7 and 6.8. Although no nearby solid boundaries
were present in these experiments, the presence of other bubbles represents an analogous
asymmetry. As discussed above, such asymmetries likely affected the estimation of R, .-
However, estimates of R,,... based on image analysis have other inaccuracies. The pres-
ence of a re-entrant jet implies that an estimate based on the image segmentation algorithm
would overestimate the radius because the assumed bubble volume included a liquid jet. A
countereffect is that the radius may be underestimated due to low sampling of image frames
during the rebound. Lastly, when bubble rebounds were small enough, it is unclear how
well the calibrated image processing algorithm performed; however, because such rebounds
appeared as ‘smudges’ rather than bubbles with well defined boundaries, radii may have
been overestimated in these instances.

Given the various uncertainties associated with determining R,,., . from either PCD or
image data, a coherent strategy was necessary to consistently normalize bubble rebound
data. The strategy adopted in this effort was to use the lowest available estimate for R, ., 2.
The logic behind this approach is that PCD data should not underpredict the maximum
radius, as demonstrated by the data from Vogel and Lauterborn. On the other hand, it
is reasonable to expect that the PCD data can overpredict the maximum radius; hence,
a lower estimate based on the image data should be accepted. Ultimately, this approach
addressed the primary issue raised in Figure 6.6, wherein k, can deviate significantly from
unity for relatively asymmetric collapses. For most of the data analyzed, the estimates

of R,..» from image data were smaller and were therefore used for normalization. The
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Figure 6.6. Reproduction of Figure 16 from Vogel and Lauterborn.*® Above, « is the bubble
standoff from a solid boundary and is nondimensionalized relative to the initial bubble radius; y =1
indicates that the bubble was just touching the wall prior to its initial collapse. k1 and ko are ratios
of asymmetric bubble collapse times relative to the ideal Rayleigh times from Equation (6.1)-the
subscripts ‘1’ and 2’ respectively denote the initial collapse and the rebound.

only conditions under which PCD data consistently produced lower estimates involved very
small bubble rebounds. As noted above, it is likely that the image processing algorithm

performed poorly and overestimated the radii of small, ‘smudge-like’ bubbles.
6.2 Compiled Results

In conducting experiments to acquire the desired test data, several important characteris-
tics of the actual test conditions were identified and studied. These studies involved the
acoustics associated with shock-wave propagation and reflection inside the test tank as well
as interactions among multiple bubbles. Eventually, details of test execution were refined

to enable the acquisition of consistent and repeatable data regarding the collapses and re-
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Figure 6.7. Sequential images of bubbles [reference: Case A, shot #26]. Each frame includes a
time stamp, two highlighted regions, and a square box outlining a target bubble for analysis. In the
referenced time scale, the shock wave arrived at the center of the field of view at time zero. The
highlighted regions each correspond to the —6 dB sensitive region of a PCD. The box is 2.8 mm on
all sides.

bounds of isolated lithotripsy bubbles. While a more careful discussion of the detailed test
conditions is deferred to the next chapter, the compilation and analysis of acquired data

are discussed in this section.

Before presenting a statistical analysis of the data, it is instructive to consider the
selection of data used in the analysis. First, during data acquisition, not every shock wave

(or ‘shot’) produced a cavitation field that was deemed worthy of study. Generally, these
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Figure 6.8. Sequential images of bubbles [reference: Case H, shot #44]. Each frame includes a
time stamp, two highlighted regions, and a square box outlining a target bubble for analysis. In the
referenced time scale, the shock wave arrived at the center of the field of view at time zero. The
highlighted regions each correspond to the —6 dB sensitive region of a PCD. The box is 2.8 mm on
all sides.

data involved either no observable bubbles or a cluster of interacting bubbles and were
accordingly not saved. During refinement of the data collection procedures, on the order of
1,000 shots were saved and analyzed in at least a preliminary fashion. From data collected
with the final test procedures across all nine test conditions from Table 5.2, 605 shots were
saved for analysis. The image sequence from each saved shot was then graded as ‘acceptable’

or ‘unacceptable’ with regard to the presence of a bubble that could be studied as an isolated,



92

single bubble. Criteria for this grading included the overall density of bubbles in the field
of view, the proximity of nearby bubbles, and the ‘dominance’ of the target bubble. Here,
‘dominance’ refers to not only the bubble size, but also to the collapse timing. Bubbles
that collapsed later were judged to be more dominant because their rebounds would be
less affected by motion of nearby bubbles. Of the 605 saved shots, 326 were graded to be
acceptable for studying single bubbles.

In addition, during the data analysis, one further restriction was applied. Namely, each
target bubble was required to begin its Rayleigh collapse at least 160 us after shock-wave
arrival at time zero. The utility of this restriction can be understood from the radius-time
curves shown in Figure 6.4. In both of these curves, a point of inflection is apparent at a
time in the 130-150 us range. Although the shock wave ideally persisted for only about
15 us, some tensile wave must have been present much later to explain the consistent point
of inflection in the radius-time curves. While this behavior is discussed further in the next
chapter, the implication for studying Rayleigh collapses is clear: for a bubble that began its
collapse too early, the passage of a tensile wave likely interfered with the collapse. Indeed,
this interpretation is borne out in that much higher variability was observed in the rebounds
of early-collapsing bubbles. The time when a bubble began its collapse was recursively
estimated from the radius-time curve in conjunction with the collapse time from PCD data.
Of the 326 bubbles analyzed, 294 met this additional restriction and were included in the
ensuing statistical analysis.

To present the data, we show in Figure 6.9 a scatter plot of the observed bubble rebounds
for each of the nine test conditions. Note that in these plots, the rebounds are categorized by
the observed symmetry of collapse. For asymmetric collapses, a bubble jet was observed in
the photographs; conversely, a symmetric collapse was assumed when no jet was apparent.
Although helpful, this categorization is imprecise given the spatial and temporal limitations
of the high-speed photographs. Especially for the low-temperature conditions from Cases A—
C, symmetry was repeatedly found to affect rebounds in an unexpected manner. Despite
the conversion of energy into the asymmetry embodied by the jet, asymmetric rebounds
were consistently larger than symmetric rebounds. It was initially postulated that the

higher pressures inside a spherically collapsing bubble led to higher pressures radiated from
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the bubble and therefore more acoustic damping of the rebounds. Such an assumption
that acoustic radiation was the dominant damping mechanism is justified by measurements
previously obtained by Vogel and Lauterborn**** as well as by calculations performed by
Johnsen et al.*” The measurements acquired in this effort were used to motivate and guide
Johnsen’s calculations on Rayleigh collapses. Because symmetry could not be actively
controlled or precisely observed, all data were kept to statistically represent the given test
conditions. Table 6.1 summarizes the data from the scatter plots, including statistics for
the symmetric collapses as well as for all collapses.

To go beyond the basic summary of the data described above, analysis of variance
(ANOVA) was performed. To compare the rebounds flatly across all test conditions, the
analysis was performed with both a one-way ANOVA as well as with a two-way analysis
across groupings of both temperature and dissolved oxygen content. These analyses were
performed using the ‘anoval’, ‘anovan’, and ‘multcompare’ functions within MATLAB (The
MathWorks, Natick, MA). Results of these analyses are shown in Figures 6.10 and 6.11.
For each test case in these plots, the mean of the rebound energy is denoted by a circle,
while the vertical bars represent a 95% confidence interval. As such, the population means
of any two cases are different at a 95% level of confidence if the corresponding vertical
bars do not overlap. In Figure 6.10, it is clear from consideration of all data in part (a)
that statistically significant differences occurred among many of the cases. Of particular
note, Case A was different from all other cases; moreover, the degassed, room-temperature
conditions represented by Case A are those most often used to experimentally study bubble
dynamics. In part (b), the one-way ANOVA was applied only to data for which no jets were
observed. These apparently symmetric rebounds are compared to model predictions with
a,, = 0.3 in this plot. The relatively low number of ‘symmetric’ rebounds for some cases
leads to the correspondingly large confidence intervals.

To more clearly discern the effects of temperature and dissolved gas content, two-way
ANOVA results were explicitly compared against variations in either dissolved gas content
or temperature. Given that Case I was troublesome as described in Section 5.5, the two-way
ANOVA ignored this case. To avoid consideration of Case I, comparisons were made while

omitting either the 60°C cases or the 85% dissolved oxygen cases. Results are provided in
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Figure 6.11, where the plots can be interpreted as before. It is clear from these plots that
both temperature and dissolved gas content contributed to the variance in the observed
bubble rebounds. These comparisons were made at a 95% confidence level, while the p-
values related to the significance of both temperature and dissolved gases are less than 103

for all combinations of cases analyzed.
6.3 Discussion of Results

In these experiments, careful control of test conditions in addition to normalization of the
observed rebound data yielded conclusive results with regard to the influence of dissolved
gases and temperature on vapor trapping behavior in lithotripsy bubbles. To the author’s
knowledge, these data represent the only experimental evidence to date that systematically
characterizes vapor trapping across a range of test conditions. Although water conditions
were tightly controlled in the experiments, other pertinent variables were not directly con-
trolled. In particular, bubble asymmetries were frequently observed, while bubble collapse
times (as measured by t,) varied with a standard deviation of about 25 us. Because longer
collapse times enabled additional diffusion of non-condensable gases into the bubble, such
variability tended to blur differences among the test conditions at 10%, 50%, and 85% dis-
solved oxygen. Model calculations suggest that these variations in ¢, roughly corresponded
to changes in dissolved oxygen of up to 15% at high levels of dissolved gases and up to 5%
at low levels. The higher sensitivity at higher levels of dissolved gases may contribute to
the lack of any statistically significant difference between 50% and 85% levels, as indicated
in Figure 6.11(a).

Overall, despite the presence of some uncontrollable variables, enough data were collected
to statistically identify sensitivities to both temperature and dissolved gas content. This
result is important because both temperature and gas saturation conditions are directly
relevant to therapeutic ultrasound. In addition, these data provide several new insights.
For example, the demonstrated sensitivity to dissolved gas content contradicts assertions
made by Akhatov et al.*? on the basis of their model for gas-vapor bubbles. In this work,
Akhatov et al. explicitly argued that dissolved gas content should not affect the collapse

dynamics of millimeter-sized bubbles. Consequently, they did not address the diffusion of
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Figure 6.9. Scatter plots of bubble rebound data.
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Figure 6.9. (figure continuation)
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Figure 6.10. Comparison of one-way ANOVA results using (a) all data, and (b) only data for which
no jet was observed. For each test case, the circle represents the sample mean while the vertical bar
represents a 95% confidence interval. More specifically, any two cases whose vertical bars do not
overlap can be described as having different means at a 95% confidence level. In (b), the horizontal
blue lines indicate model predictions with boundary-layer scaling a,, = 0.3.
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Figure 6.11. Comparison of two-way ANOVA results to isolate the effects of (a) dissolved oxygen
level, and (b) temperature. In (a), Cases G, H, and I are omitted from the analysis, while Cases
C, F, and I are omitted in (b). As above, for each test case, the circle represents the sample mean
while the vertical bar represents a 95% confidence interval. Any two non-overlapping bars represent
different means at the stated confidence level.
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Table 6.1. Experimental observations of bubble rebounds.

% Energy Retained through Collapse

Average (all)  Average (no jet) Minimum Maximum

[# samples] [# samples] (no jet) (no jet)
Case A 7.6% 4.7% 1.3% 8.4%
20°C, 10% DO, [31] [12]
Case B 14.0% 9.8% 2.6% 26.6%
20°C, 50% DO, [37] [13]
Case C 15.4% 11.3% 4.8% 14.1%
20°C, 85% DO, [30] 6]
Case D 14.9% 6.1% 0.4% 10.8%
40°C, 10% DO, [42] [5]
Case E 19.6% 7.0% 7.0% 7.0%
40°C, 50% DO, [20] [1]
Case F 23.0% 18.0% 13.9% 21.7%
40°C, 85% DO, 23] [3]
Case G 22.8% 21.2% 7.1% 48.8%
60°C, 10% DO, [46] [17]
Case H 25.1% 22.6% 7.2% 39.0%
60°C, 50% DO, [43] [19]
Case 1 19.9% 19.8% 10.7% 33.2%
60°C, 85% DO, [22] 4]

non-condensable gases in their experiments with laser-induced bubbles. Aside from vapor
trapping per se, an examination of the symmetric and asymmetric collapses in Figure 6.9
suggests that acoustic radiation ceases to be the dominant damping mechanism when bubble

rebounds retain ~25% of the energy prior to collapse. Specifically, the ‘jet’ and ‘no jet’
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data points become fairly uniformly mixed for Cases G and H. With this observation, we
can reasonably speculate that the energy dissipated from the excitation of non-volumetric
oscillation modes is comparable in magnitude to the energy radiated acoustically from the
bubble.

In addition to global evaluations of the experimental data, specific comparisons can also
be made with model predictions. As described in Section 4.3, the collapses of lithotripsy
bubbles are controlled by the mechanical rather than the thermal aspects of vapor transport.
Accordingly, relevant model predictions involve the impact of the scaling parameter a,, on
bubble rebounds. In the context of acquired experimental data, model predictions at 20°C,
40°C, and 60°C are plotted in Figure 6.10 for a,, = 0.3. As is evident in the figure, the
model does not distinguish among levels of dissolved gases beyond the parameter a,,. The
selection of a,, = 0.3 was based upon comparisons with prior data for spherical bubbles.
Vogel and Lauterborn*® found that 3.5 mm laser-induced bubbles retained only about of 17%
of their energy after the initial collapse. In similar experiments, Akhatov et al.** found the
normalized rebound energy to be about 2.4% for a spherical 1 mm bubble. Using equivalent
conditions for the Rayleigh collapse of a bubble with an initial molar fraction of vapor of
0.999, the present model matches these data quite well with a,, = 0.3. It predicts normalized
rebounds of 16% and 2.4% for 3.5 mm and 1 mm bubbles, respectively. Note that the cited
experimental data involved test conditions that were not fully specified; apparently, degassed
water at room temperature was used, thereby approximately representing the Case A test
conditions from this effort.

In comparing model predictions with a,, = 0.3 to acquired test data at 20°C, good quan-
titative agreement occurs at a 10% dissolved oxygen level (Case A). The experimental data
for symmetric rebounds under Case A conditions imply normalized rebound energies of 4.7%
(see Table 6.1). Although this value is somewhat higher than the 2.4% reported by Akhatov
et al.*? for 1 mm bubbles, 2.4% remains well within the 95% confidence interval shown in
Figure 6.10(b). Moreover, it is likely that many of the bubble rebounds in which no jet was
observed did indeed possess some asymmetry. Hence, an average rebound slightly greater
than 2.4% is consistent with the prior data in which symmetry was carefully controlled.

Still considering data at 20°C, the ANOVA plots suggest that rebounds at higher levels of
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dissolved gases for Cases B and C should lead to longer rebounds. Accordingly, because the
model can simulate the impact of dissolved gas content only through the parameter a,,, the
data from Cases B and C are best simulated with a,, ranging up to 0.55. Overall, the scaling
model quantitatively captures the observed rebound data at 20°C, where vapor trapping
behavior is modeled by scaling the diffusive boundary-layer thickness as the dissolved gas
level changes. In addition, it is interesting to note that the lithotripsy bubbles observed in
this effort seem to behave very similarly to the laser-induced bubbles studied previously.
From Figure 6.10(b), the model with a,, = 0.3 overpredicts the observed rebounds at
40°C and 60°C. Two explanations are suggested to explain this discrepancy: (1) acoustic
radiation is no longer the predominant damping mechanism at higher temperatures, thereby
implying that energy losses due to asymmetries decreased rebound amplitudes relative to the
spherical model; and (2) the scaling approach used in the model does not effectively capture
the rapid condensation rate required at higher temperatures (i.e., very small values of a,,
would be necessary to match the experimental data). In support of the first explanation, a
spherical rebound with a rebound energy of 49% was observed for Case G. Such a rebound
actually exceeds the model prediction at 60°C with a,, = 0.3. Moreover, while this data
point is unique for Case G, a number of spherical rebounds between 30-40% were observed
for Case H. Ultimately, both of the proposed explanations may contribute to the observed
discrepancies between model predictions and experimental data at higher temperatures.
To summarize the range of rebounds predicted by the model for the conditions tested,
Figure 6.12 depicts predicted rebound energies as a function of the parameter a,,. Separate
curves are included for each test temperature, as sorted by color. Predictions were generated
from simulated Rayleigh collapses for which the initial radius was either 0.7 mm or 1.2 mm
to bracket the range of maximum radii observed experimentally. Lastly, the initial molar
fraction of vapor inside the bubble was assumed to be 0.999 in order to be consistent with
simulations of rectified diffusion for a millimeter-sized lithotripsy bubble. Although these
calculations tend to be numerically unstable at very small scaling values (a,, < 0.2), it
is clear from part (a) of the figure that each curve approaches an asymptote at large a,,.
Moreover, the closeness of the asymptotes at 40°C and 60°C suggests that vapor trapping

leads to maximum rebound energies of about 60-70%. By way of comparison, the largest
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Table 6.2. Inferred values of the scaling parameter a,, from experimental data.

Water Conditions A
Case A 20°C, 10% DO, 0.4
Case B 20°C, 50% DO, 0.52
Case C 20°C, 85% DO, 0.55
Case D 40°C, 10% DO, [< 0.2]
Case E 40°C, 50% DO, [<0.2]
Case F 40°C, 85% DO, 0.25
Case G 60°C, 10% DO, [<0.2]
Case H 60°C, 50% DO, [< 0.2]
Case I 60°C, 85% DO, [<0.2]

symmetric rebound observed experimentally was 49% (Case G). If the data are taken to be
representative of the types of rebounds physically achievable, we can conclude that boundary
layer thickness for lithotripsy bubbles should not be scaled by values of a,,, larger than about
1. For convenience, the plot in part (b) provides an overlay of experimental results for the
various test conditions for a,, < 1. The plotted experimental values represent the average
values of symmetric rebounds for a given test case, as listed in Table 6.1. From this plot,
the values of a,, listed in Table 6.2 can be inferred based on experimental observations. As
discussed above, for temperatures above 20°C, it is unclear that the inference of values of

a,, for spherical collapses is appropriate.
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Figure 6.12. Model predictions of vapor trapping during a Rayleigh collapse. In (a), energy
retained through collapse is plotted as a function of the scaling parameter a,,, while variation with
temperature (T ) and initial radius (Rp) are also considered. In (b), experimental data are overlaid
on top of these same model-prediction curves as thick horizontal lines. The plotted experimental
data are an average of symmetric rebounds observed under given test conditions.
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Chapter 7

TEST CONDITIONS FOR LITHOTRIPSY BUBBLES

In the experiments described in previous chapters, the number and location of cavitation
nuclei were not explicitly controlled and some degree of randomness remained inevitable.
However, significant efforts were undertaken to understand and control the sources of vari-
ability; ultimately, consistent data were collected. Below, these efforts are discussed in more
detail. As guided by observations of the cavitation field, variations in test conditions were
inferred from the characteristics of bubble growth and collapse (i.e., R,,q.; and #; from
Figure 5.1). First, maintaining very clean water was found to be necessary in order to avoid
the excitation of dense clusters of bubbles rather than isolated bubbles. The water system
described in Chapter 5 was instrumental in preparation of the water. Aside from the water
itself, variabilities in shock-wave generation and propagation were also identified.

In the first two sections below, direct observations pertinent to the generation and reflec-
tion of the focal shock wave are discussed. Subsequent sections are devoted to consideration
of the observed growth and collapse characteristics of bubbles. For context, the collapse time
(i.e., t; from Figure 5.1) of SWL bubbles has been associated with the clinically relevant
issue of shock-wave delivery rate;'° however, experimentally observed times have exceeded
those predicted analytically.®®' Attempted explanations of the experimental observations
have included multi-bubble interactions and possible inaccuracies in measuring of the tensile
portion of shock waves; both of these issues are addressed below. In addition, an alternate
explanation for the longer collapse times is proposed in terms of secondary acoustic waves

radiated from the ellipsoidal reflector.

7.1 Shock-Wave Variability

Given that an electrohydraulic lithotripter was used in this work, significant shot-to-shot

variability was expected. The variability is caused by the stochastic nature of a high-voltage
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breakdown between electrodes and the corresponding impact on the generated acoustic
wave. However, an additional trend was noted from observations of the cavitation field.
Although a weaker acoustic wave should be expected with newer and more closely spaced
electrodes, a qualitative change in the cavitation field was noted as electrodes aged. Brand
new electrodes produced smaller regions of cavitation and fewer bubbles. As dozens of shots
were fired, this qualitative behavior could be maintained by reducing the charging voltage
of the lithotripter to account for the generation of stronger acoustic waves. However, as
electrodes aged to approach about 200 shots, the cavitation field typically began to change
as more bubbles were excited. Upon inspection of such electrodes, it was apparent that the
electrical discharge path did not occur consistently between the tips of the electrodes. As
electrodes became worn, the discharge path may have become less consistent, thereby alter-
ing the assumed geometry in which the shock wave is initiated at a focus of the ellipsoidal
reflector. It is speculated here that geometric effects associated with the location of the
‘spark’ between electrodes may account for the observed changes in the cavitation field.
To better understand shock-wave variability, the focal acoustic field was explicitly mea-
sured and characterized with regard to both the geometry of the ellipsoidal reflector as well
as the state of the electrodes. More specifically, beamwidths of individual shock waves were
measured using a prototype hydrophone array. This work has been written in a manuscript
recently submitted to the Journal of the Acoustical Society of America and is included here
in Appendix B. While signficant shot-to-shot variability was observed in these measure-
ments, it remains difficult to interpret them in terms of the qualitative descriptions of the
cavitation field given above. However, with regard to reflector geometry, it was found that
a more highly focused ellipsoidal reflector did indeed produce a narrower focal beamwidth;
however, the observed cavitation behavior (perhaps associated with secondary waves as dis-
cussed in Section 7.4) precluded this reflector from being especially useful in the study of

Rayleigh collapses.

7.2 Surface Reflections

In the previous section, variability of the focused shock wave is discussed. However, in

addition to the primary focal wave, a reflection of this wave from the surface of the water
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surface in the test tank was observed to affect bubbles. The presence of this reflection
was first identified by the appearance of a ‘ringing’ on the signal of the PCD that was
connected to the analog high-pass filter. It is speculated that this ringing represents a type
of impulsive filter response that is induced by the impingement of a reflected wave on the
PCD. Regardless of the characterization of the ringing signal, its timing was predictably
changed with the water level. Moreover, high-speed photographs indicate the presence of
such a reflected wave in that gas bodies that had disappeared after passage of the primary

focal wave are re-excited.

This effect is depicted in Figure 7.1; the timing suggests that the focal wave was scattered
at the geometric focus of the lithotripter and that this scattered wave traveled to the water
surface and back. As observed by both the filter ‘ringing’ and the photographs, this reflection
occurred repeatably and was not fully absorbed or re-directed by the placement of an angled
metal or plastic plate beneath the water’s surface. The plates used for re-direction were
roughly the same size as the opening of the HM3-style reflector. Ultimately, this reflection
was addressed by building a taller tank and raising the water level to delay arrival of the
reflected wave until well after the bubble rebound had occurred. However, it is worthwhile

to note that typical lithotripter tanks are much smaller and likely exhibit similar reflections.

7.3 DModeling Bubble Collapse Times in a Cluster

To aid interpretation of experimentally observed bubble collapse times, multi-bubble inter-
actions were simulated using two recently published models. One model takes an ‘averaged
medium’ approach and assumes a uniform bubble cluster.®® The other explicitly simulates
the dynamics of all bubbles in a finite cluster.®” Because liquid compressibility does not
strongly affect collapse times, incompressible versions of both models were implemented.
Before describing each model, it is instructive to recall the basic, incompressible Rayleigh-
Plesset equation (2.25), which is repeated below for convenience:

.3 1
RR+ §R - p_(pw_poo)

0
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Figure 7.1. Sequential images of bubbles to demonstrate surface-reflection effects. In the referenced
time scale, the focal shock wave arrived at the center of the field of view at time zero, while the direct
wave arrived 37 us earlier. The water level in the tank was measured to be vertically 248 mm above
the center of the field of view. Given water at 20°C with a sound speed of 1,482 m/s, reflection of the
direct wave from the water’s surface arrived back in the field of view at ~298 us; moreover, surface
reflection of the focused wave arrived at ~335 us. Visible excitation of bubble remnants suggests a
nontrivial effect from the reflection of the focused wave.

Above, p,, and p,, are again defined from Equations (2.23) and (2.29). This basic relation
for a single bubble is adapted for the cluster models discussed below. For simplicity, the
radial dynamics of each bubble are closed by using a polytropic expression for the pressure

inside the bubble:

R \*
Pi = Pio EO (7.1)
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Above, p,, is the initial pressure inside the bubble, R, is the initial bubble radius, and  is the
ratio of specific heats. Considering an adiabatic approximation for air inside the bubble, we
use v = 1.4. Although this polytropic approximation is not well suited for violent collapse
phenomena, it predicts essentially the same collapse time for a single bubble as the model
presented in Chapter 2. Accordingly, the single-bubble model described by the previous two
equations is a suitable starting point for modeling bubble clusters in the context of collapse

times.

Arora et al.®® have derived a modified form of the two-degree-of-freedom Rayleigh-Plesset
equation. In their approach, all bubbles within a uniform cluster behave identically and the

radial dynamics are represented as follows:

(1+27RN"*) RR+ (3/2 + 4mRN'*) R? = 1%"3 (7.2)

Here, N represents the uniform number density of bubbles; hence, nearby bubbles contribute
terms proportional to both RR and R?. Given this formulation, all bubble interactions occur
instantaneously inasmuch as liquid incompressibility implies an infinite sound speed. In
addition, it should be noted that the derivation of this model includes the assumption that
bubbles only interact with one another over distances less than the average bubble-to-bubble
spacing. First, this assumption is necessary on boundedness considerations. Assuming
a calculation of the radial dynamics of a bubble at the origin of a spherical coordinate
system, the influence of any single neighboring bubble will decline as 1/r in terms of the
radial distance r to the neighbor bubble. However, because the number of bubbles in a
homogeneous cluster will increase with the cluster volume and r*, the cumulative influence
of all bubbles in an infinite cluster is not bounded. Since the radial dynamics should clearly
remain bounded, imposition of a finite bubble interaction distance is necessary. Moreover, as
discussed by Arora et al.,® ignoring distant bubbles in the model can be justified physically
by considering finite acoustic propagation delays as well as shielding effects of intervening

bubbles.

In a different approach, Hamilton et al.®” represented each bubble in a cluster with

its own two-degree-of-freedom equation. For the i** bubble in the cluster, the governing
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equation can be written as

. 3.
RZRT.,+§R§+Z

R,

g#i W

(R + 2R§) = pL;:]Zi"- (7.3)

where d,; is the distance between the i"* and j** bubbles in the cluster. Using this approach,

a cluster comprising N bubbles in any geometry can be simulated by simultaneously solv-
ing N of the above equations. Even using the assumption of liquid incompressibility and
instantaneous bubble interactions, implementation of such a model becomes computation-
ally challenging for more than 10-20 bubbles. However, the computational limits of this
approach are balanced by the arguments described above for limiting the bubble interaction

distance and the number of relevant ‘neighboring’ bubbles.

To understand the impact of multi-bubble interactions on the collapse times of lithotripsy
bubbles, both of the above models were used to calculate the response of bubble clusters
excited by an analytic shock wave. For the former model, the simulations were executed
by assuming initial bubble radii of 3 ym and specifying a number density N. For the latter
model, 3 um bubbles were assumed to populate a 3x3x3 Cartesian grid (27 total bubbles).
The initial radii of the bubbles were chosen to be constant at 3 pm, though the results were
not sensitive for initial radii up to about 10 pm. Moreover, it is very likely that cavitation
nuclei were no larger than 3 pm in the experimental work given the absolute filtration of
particulates above 2 pum. The spacing between bubbles in the grid was then determined by
the specified number density N. In this case, the relevant collapse time was taken to be that
of the bubble at the center of the grid. Assuming simultaneous excitation of all bubbles
by an analytic shock wave [see Equation (4.2), 4 = 25 MPa, a = 6.5 x 10° rad/s, and
f = 100 kHz], radius-time curves were calculated using both models with varying bubble
densities.

As shown in Figure 7.2, both models demonstrate that higher bubble densities lead to
longer collapse times. Simulations suggest that even low bubble densities of 1/cm?® can
affect the collapse time by a notable amount relative to that of an isolated bubble. In com-
paring the models, a qualitative difference is apparent. While the uniform medium involves

symmetric bubble growth and collapse, ‘edge’ effects for the explicit cluster introduce an
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asymmetry between growth and collapse phases. Moreover, this asymmetry becomes more
prominent for higher densities at which the cluster boundaries are closer to the center bub-
ble. In addition to the asymmetry that begins during bubble growth, early collapses by
bubbles at the periphery of the cluster emit large compressive waves that accelerate the col-
lapse of the center bubble. Because the explicit cluster model does not accurately simulate
bubble collapses or the propagation of shock waves emitted during collapse, some artifacts
associated with nearby collapses are unavoidable.

Although higher bubble densities do increase collapse times, quantitative evaluation
of model predictions implies that bubble interactions alone do not account for the longer
collapse times observed experimentally. From the data presented in Chapter 6 at a temper-
ature of 20°C, bubbles achieving a maximum radius of about 0.8 mm consistently collapsed
about 250 ps after shock-wave arrival. Although model simulations do not account for va-
por pressure, these data at 20°C should closely represent the conditions simulated in the
calculations from Figure 7.2. From the cavitaton fields photographed experimentally (see
Figures 6.2, 6.3, 6.7, 6.8), it is typical to observe on the order of 5 ‘significant’ bubbles in the
field of view. Because not all bubbles are the same size, ‘significant’ bubbles are assumed
to be similar in size to the target bubble. Considering that the optical depth of field in
the photographs is larger than the transverse width of the lithotripter’s focal region, it’s
reasonable to estimate the viewed cavitation volume as height of the field of view times the
transverse width squared. Assuming a transverse width consistent with the —6-dB focal
region of the tensile portion of the shock wave,®* the viewed cavitation volume is roughly
1.9 x1.5* = 4.3 cm®. Consequently, observation of 5 ‘significant’ bubbles in the photographs
is comparable to a bubble density of 5/4.3 ~ 1/cm?®. At this low of a bubble density, the
uniform medium model predicts a collapse time less than 200 us. At 1 bubble per cm?®, the
explicit cluster model predicts a collapse time near the observed 250 us, especially when
considering that the collapse time is accelerated by nearby collapses. However, this model
includes 27 ‘significant’ bubbles with a grid spacing of 1 cm along each axis—a photograph
of comparable conditions would likely include at least 12 such bubbles. Ultimately, the
discrepancies in simulated collapse times between models highlight the different assump-

tions used regarding the maximum bubble interaction distance. In light of these differences,
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Figure 7.2. Growth and collapse of bubbles exposed to a lithotripter shock wave. Simulation
results for (a) a bubble within a uniform, ‘averaged’ bubbly medium, and (b) a bubble at the center
of a 3x3x3 cluster of 27 bubbles. Typical cavitation fields such as those depicted in Figures 6.2 and
6.3 correspond to densities on the order of 1/cm®.

it seems likely that the uniform-medium simulation at 1/cm?® is a better representation of

experimental test conditions.

Despite some ambiguities in interpreting simulated collapse times, the longer times ob-
served experimentally do not appear to be caused solely by multi-bubble interactions. In
addition to collapse times per se, the shape of the radius-time curves is also telling. Exper-
imental observations consistently exhibited the presence of an asymmetry (see Figure 6.4);
however, neither bubble-cluster model predicts similar asymmetries at bubble densities near
1/cm®. While bubble interactions likely did play a role in increasing bubble collapse times,
an alternate hypothesis provides a credible explanation for the observed radial dynamics.
As discussed further in the next section, secondary pressure waves radiated from the ellip-
soidal reflector may have affected the dynamics of bubbles initially excited by the primary

focal shock wave.
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7.4 Secondary Waves

As mentioned above, the characteristic shape and collapse times of experimentally observed
radius-time curves imply that secondary acoustic waves not attributable to other bubbles
were present. To further elucidate this point of view, the radial dynamics of an isolated
bubble are illustrated in Figures 7.3 and 7.4. From the high-speed photographs, only a single
‘significant’ bubble was visible. Although a second small bubble appeared in early frames,
the oversized amplitude of this bubble’s rebound suggests that its dynamics were dominated
by the target bubble. Because the isolated target bubble still possessed an asymmetry in its
growth and collapse phases, it is reasonable to infer the presence of a secondary excitation.

The asymmetry evident in Figure 7.4 appears to represent an inflection point in the radial
dynamics. As discussed in Appendix B, this behavior was exaggerated when a more highly
focused ellipsoidal reflector was used (see Figure B.6). This link to the ellipsoidal reflector
in conjunction with recent modeling work by Sapozhnikov et al.®® strongly suggests that
reverberations inside an HM3-style ellipsoidal reflector play a role in the observed bubble
dynamics. Although not previously considered, such waves may be relevant to studies that
either try to quantify the cavitation potential of a lithotripter® or to control cavitation

effects with multiple acoustic pulses.®

7.5 Impact of Bubbles on Shock-Wave Measurements

In trying to match analytically predicted bubble collapse times with experimental data,
a final aspect involves hydrophone measurements of the tensile component of lithotripter
shock waves. Because this tensile component drives the subsequent bubble growth and
collapse, accurate measurement of the energy in this portion of the shock wave is critical.
In previous work, such hydrophone measurements have been speculated to be inaccurate
as a means of explaining experimental collapse times.®* In related work, researchers have
attempted to characterize how the tensile component of a shock-wave is attenuated as it
propagates through a bubbly medium.**"%? While these efforts have used models and/or
hydrophone measurements to evaluate attenuation of the traveling shock wave, the impact

on hydrophone measurements of nearby bubbles has not been explored.
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Figure 7.3. Sequential images of bubbles [reference: Case G, shot #60]. Each frame includes a
time stamp, two highlighted regions, and a square box outlining a target bubble for analysis. In the
referenced time scale, the shock wave arrives at the center of the field of view at time zero. The
highlighted regions each correspond to the —6 dB sensitive region of a PCD. The target bubble is
almost completely isolated. Although a second bubble is visible in the early frames, it is clear that
this bubble was very small and primarily excited by pressures radiated from the much bigger target
bubble.

To better understand hydrophone measurements of shock waves that induce cavitation,
the simple Rayleigh-Plesset models from Section 7.3 for a single bubble as well as for a bubble

cluster were utilized. First, assuming an incompressible liquid, the pressure radiated by a
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Figure 7.4. Radius-time curve derived from image sequences of a bubble from Case G conditions
[reference shot #60]. Each red ‘x’ indicates a measurement from a single frame while the blue lines
connect measurements. Note that measurements from image frames are supplemented by the PCD
data—at measured collapse times, a radius of zero is assumed and plotted. Asymmetry associated
with a point of inflection near the frame at 173 us implies the presence of secondary acoustic waves
that alter the radial dynamics.

single bubble can be expressed as%

Praa(T5t) = po (7.4)

7 (iezie) (T

where t is time and r is the radial coordinate with the origin at the bubble’s center. For a

single 3 yum bubble excited by an analytic shock wave, the radiated (or ‘scattered’) pressure
from the bubble was calculated as shown in Figure 7.6(a). The simulated shock wave
approximates the tensile wave from a Doli-50 lithotripter °® by using Equation (4.2) with A =
6 MPa, a = 3x10° rad/s, and f = 90 kHz. Although the radiated pressures calculated from
Equation (7.4) inherently assume incompressibility, the plotted pressures at the indicated
radial locations include an acoustic delay estimated from the linear sound speed in water.
Considering these radiated pressures, algebraic superposition of the incident shock wave and
the scattered wave yields the plots in Figure 7.6(b). Assuming that the incident shock wave
arrives simultaneously at both the bubble and measurement locations either 1 mm or 5 mm

away, these curves approximate the shock wave as it would be measured in the vicinity of
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a single bubble. Notably, even a single nearby bubble can measurably attenuate the tensile
portion of the measurement. In addition, we note that at 5 mm away, the acoustic delay
of the scattered wave is large enough that its compressive phase reinforces the compressive
‘ringing’ that follows the tensile part of the incident shock wave. Both of these qualitative
effects have been observed for hydrophone measurements in bubbly media,®* % though they
have been attributed to shock-wave attenuation during propagation through bubbles.

The insight gained above from a single bubble suggests that bubbles can locally affect
hydrophone measurements of a lithotripter shock wave independent of propagation effects.
However, to go a step further, the multi-bubble models from Section 7.3 were also considered.
First, for a uniform medium as modeled by Equation (7.2), the effects of bubble interactions
can be qualitatively evaluated. As illustrated in Figure 7.6, stronger interactions at higher
bubble densities lead to two competing effects. The scattered pressure of any individual
bubble is less at higher densities, as can be inferred from the mutual inhibition of radial
growth for closely spaced bubbles. However, the reduced scattering of each bubble is offset
by the presence of more bubbles when densities are higher. To address these competing
effects, the explicit cluster model defined by Equation (7.3) was used to study a 2 x 2 x 2
grid of bubbles as depicted in Figure 7.7(a). Using the approach from Figure 7.6(b), a
hydrophone measurement at the center of the 8-bubble grid was estimated by superposition
of the incident shock wave and the pressures radiated from each of the bubbles. Again, the
shock wave was assumed to simultaneously excite all bubbles while propagation delays of
the scattered pressures were accounted for in the superposition of pressures at the center of
the grid. Results of these calculations at various densities are presented in Figure 7.7(b).
From these simulations, higher bubble densities indeed reduce the tensile portion of the
measured wave, while densities as low as 10/cm?® produce noticeable effects. Note that the
‘spikes’ on the blue, red, and green curves correspond to the initial bubble collapses induced
by the leading compressive phase of the incident shock wave.

In prior studies of the effects of bubbles on the attenuation of tensile component of
lithotripter shock waves, bubble densities from a few bubbles per cm® to thousands per
cm® have been considered.®*® Each of these prior studies noted the attenuative effects

of bubbles on the energy in tensile part of the shock wave. However, to the extent that
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Figure 7.5. Scattering from a single bubble excited by an analytic shock wave that simulates the
output of a Doli-50 lithotripter.®3 Part (a) shows pressures radiated by a single bubble at nearby
distances, while part (b) shows algebraic superposition of the radiated pressures with the incident
shock wave.

mechanisms were discussed, the attenuation was associated with propagation through a
bubbly medium. In this section, a mechanism has been identified through which bubbles can
locally affect hydrophone measurements without attenuating the energy actually maintained
in the tensile component of the shock wave. As such, care should be exercised in interpreting
hydrophone measurements of lithotripter shock waves when bubbles may be present. Ideally,
standard procedures used to characterize the acoustics of clinical lithotripters should include
measures for controlling and/or observing cavitation during the measurement. While the
curves plotted in Figure 7.7 provide an estimate of the magnitude of the local effects of
bubbles on hydrophone measurements, these results are clearly dependent on the exact
geometry of the bubbles. Moreover, effects including acoustic propagation delays among
interacting bubbles, spatial and temporal variation of the incident shock wave, and liquid
compressibility in the formulation of the radial bubble dynamics have not been considered.
A model including a more detailed accounting of bubble interactions is currently under
development by collaborators at the University of Texas at Austin. Overall, this work has
led to ongoing collaborations with researchers at the University of Texas at Austin and

Indiana University-Purdue University Indianapolis. **%°



116

1 : . 500 .
''''' o 1 bubble 1 bubble :
08 : 10/cm® 400 + 10/em® ... L ]
— 1,000 / cm® 1,000 / cm®
g : T : .
2 o4t - S NN 5 300 - T T e
o @ . ;
2 ook W L NN\ % : :
g &U 200 ........................ ............ i
a @ NN g X
100 ........... ............. ............ N
02 e NG T . .
-0.4 0
0 5 10 15 0 5 10 15
Time (us) Time (us)
(a) (b)

Figure 7.6. Scattering from a single bubble within a uniform bubble cluster. (a) Pressures radiated
1 mm away from a single bubble within a uniform cluster of various densities, and (b) radius-time
curves depicting how the interaction with surrounding bubbles inhibits bubble growth. The plots
illustrate competing effects whereby higher bubble densities imply both the superposition of radiated
pressures from more bubbles as well as a diminished contribution from each bubble.

10 T T
sl Tl L L incident SW
: : : 3
+10/cm
6 .................... +100/cm3
4t + 1,000/ cm®

Pressure (MPa)

d~4.6mm (10/cm®)

d~22mm (100/cm?) -6
d~1.0mm (1,000/cm?)

Time (us)

(a) (b)

Figure 7.7. Effects of bubble clusters on shock-wave measurements. In (a), the simulated grid
of 8 bubbles is depicted along with the assumed measurement location in the center of the grid.
Accounting for local scattering within the cluster, calculated pressure measurements of the incident
shock wave at the center of the cluster are plotted in (b).
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Chapter 8

CONCLUSIONS

8.1 Summary

The overarching goal of this effort was to advance the paradigm that vapor plays an im-
portant role in the bubble dynamics associated with therapeutic ultrasound. Here, thera-
peutic ultrasound is used to describe both high-intensity focused ultrasound (HIFU) and
shock-wave lithotripsy (SWL). Both a numerical model as well as experiments were used to

elucidate the influence of vapor.

The motivation for studying vapor in HIFU is self-evident: as acoustic energy heats
tissue, boiling can and does occur in some treatments. As such, bubbles excited under
temperatures at or near boiling will involve vapor. However, due to the difficulty of modeling
vapor transport behaviors, previous modeling related to HIFU has either ignored vapor® or
analyzed only low-amplitude acoustic excitations.?®*? For SWL, vapor has been implicated
in the dynamics of bubble collapse and has been treated with a reduced-order model. 3¢
However, this previous work did not characterize the influence of vapor beyond the presence
of an arbitrary scaling parameter. Given this context, the present effort has aimed to provide
a framework for addressing gas-vapor bubble dynamics under the thermodynamic conditions

characteristic of therapeutic ultrasound.

Using a model based on scaling principles, the effects of vapor and vapor transport on
inertially collapsing bubbles were categorized as thermal and mechanical. In the model,
thermal effects are identified through scaling parameters for heat conduction in the gas and
the liquid, while mechanical effects are identified with a scaling parameter for mass diffusion
among vapor and gas molecules. The thermal effects of vapor were not studied in detail in
this work; rather, related calculations were used to tune the associated scaling parameters.
From there, model predictions were used to conclude that Rayleigh collapses of millimeter-

sized bubbles are primarily sensitive to the mechanical effects of vapor transport. With this
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determination, experiments to test this aspect of the model were designed and executed.

Experiments involved observation of the collapse and rebound of individual lithotripsy
bubbles. By varying liquid conditions with regard to temperature and dissolved gas content,
the experiments were designed to alter gas-vapor diffusion during collapse, thereby eluci-
dating the associated vapor-trapping behavior. The acquired data statistically confirmed
that both dissolved gas content and temperature affected bubble rebounds. In itself, this
result is meaningful in that it demonstrates a higher sensitivity to dissolved gases than pre-
viously thought.*? Moreover, these data represent the first data collected to systematically
understand vapor trapping under various liquid conditions. Another significant result of the
experiments concerns the impact of bubble symmetry on the energy retained in volumetric
bubble oscillation. Especially in cold and degassed water, asymmetric collapses were found
to produce much larger rebounds despite the energy consumed by formation of a re-entrant
jet. This phenomenon can be explained by noting that the energy retained through such a
collapse is primarily controlled by the damping associated with acoustic radiation. Because
asymmetric collapses generate lower pressures and temperatures inside a bubble,®® the ac-
companying acoustic radiation is limited and the bubble retains more energy. However, at
higher temperatures and/or levels of dissolved gas content, the correlation of asymmetric
collapses and larger rebounds did not hold in the data collected here. As such, we con-
clude that acoustic radiation ceases to be the singularly dominant damping mechanism for
lithotripsy bubbles under physiological conditions with higher temperatures and saturation
of dissolved gases. Lastly, the presence of asymmetries in many of the observed collapses
hindered direct comparison of experimental data from various test conditions with model
predictions. However, the model was found to capture the larger trends observed in the
data and to accurately simulate published results for spherical bubble collapses under cold
and degassed conditions.

In addition to the aforementioned work on gas-vapor bubble dynamics, practical issues
associated with cavitation during SWL were also addressed. In particular, insights were
gained regarding shock-to-shock variability in an electrohydraulic lithotripter and the col-
lapse times of lithotripsy bubbles. To assess both shock-wave repeatability and the impact

of a more highly focused reflector, the beamwidths of individual shock waves were measured
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using a prototype hydrophone array. These measurements demonstrated that both the age
of the electrodes as well as the reflector geometry affected the characteristics of the acoustic
field. Also, secondary effects associated with the cavitation field were documented to be
stronger when the more highly focused reflector was used.®” To better understand bubble
collapse times, two models from the literature for bubble clusters were implemented. 3587
These models were used to analyze bubble collapse times directly as well as to explore the
effects of scattering on hydrophone measurements. Calculations suggested that observed col-
lapse times cannot be explained solely by bubble interactions. Moreover, scattering within
bubble clusters was identified as a mechanism by which the tensile portion of a measured
shock wave can be reduced without attenuating the incident shock wave itself. Charac-
terization of these scattering effects comprises an ongoing collaborative effort with other
groups.® Lastly, an alternative mechanism for explaining experimentally observed collapse
times was proposed. Based upon the shapes of experimental radius-time curves and pre-
liminary calculations by Oleg Sapozhnikov,®® acoustic reverberations inside the ellipsoidal

reflector appear to be sufficient to lengthen bubble collapse times.

8.2 Future Work

The model developed and tested in this effort represents a tool that can be used to better
understand bubble dynamics in therapeutic ultrasound. Considering that the complemen-
tary side of energy retained by a collapsing bubble is the energy deposited, the model and
the experimental data yield insights into energy deposition during therapeutic ultrasound.
To the extent that bubbles are implicated in a given therapy, the corresponding energy
deposition can be clinically relevant. For example, cavitation has been particularly im-
plicated in the comminution of small renal stones during SWL and this effect has been
studied relative to pressures radiated from collapsing bubbles. However prior studies have
typically not considered vapor trapping and the sensitivity to liquid conditions, as done
here. Similarly, calculations that have been used to characterize bubble-enhanced heating
during HIFU have been based upon acoustic radiation from inertially collapsing gas bubbles
that remain symmetric. From the experimental results of Chapter 7, asymmetries during

collapse can drastically reduce energy deposition caused by acoustic radiation. Overall,
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the model and the experimental work associated with gas-vapor bubbles can be used to
provide estimates of energy deposition by bubbles during SWL and HIFU. The modeling
approach from Chapter 2 is well suited to such an anaylsis in that heat and mass transport
are addressed while enforcing an energy balance on the contents of the bubble.

As discussed above, the scaling model presented in this work can be used to investigate
energy deposition. This model is especially well suited to the analysis of a single collapse
and rebound. However, as described in Section 2.2.3, solving the heat transport problem
algebraically does not account for the evolution of a thermal boundary layer. Moreover,
even though the Plesset-Zwick convolution implemented herein does simulate such a ther-
mal boundary layer, this implementation is not numerically stable for more violent collapses.
While the scaling model can be used to estimate energy deposition during an application of
HIFU, it is insightful to further consider how the evolution of a thermal boundary layer over
many acoustic cycles might affect the bubble dynamics. In an earlier modeling effort, the
heat transport component of a model developed by Yasui®® was used to study HIFU bubbles.
Although Yasui’s approach involved certain assumptions and limitations, it did provide a
method for approximating cumulative effects in a thermal boundary layer. Simulations
with this model suggested that vapor effects associated with elevated temperatures in a
boundary layer could qualitatively alter the bubble’s behavior.*® More specifically, the sim-
ulations predicted that the bubble would achieve a larger maximum radius and collapse less
frequently during HIFU excitation when a thermally significant boundary layer occurred.
Such a change in the dynamics would affect the rate of rectified diffusion of non-condensable
gases, which occurs on a time scale proportional to R* from Equation (2.42). Importantly,
for treatments with repeated pulses of HIFU, non-condensable gases determine bubble dis-
solution times between pulses. One way to test these predictions experimentally would be
to directly observe a bubble’s maximum radius and/or its frequency of collapse during expo-
sure to HIFU. Although such direct measurments remain challenging, related photographic
observations have been obtained just after HIFU was stopped.®® In these experiments, a
bubble was observed to grow monotonically for a brief period after application of HIFU. If
a superheated boundary layer evolved during exposure to HIFU, then the observed growth

could be interpreted as ‘transient boiling’ whereby the bubble grew as a vapor bubble in a
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superheated liquid until the energy in the boundary layer was exhausted. The possibility of
such ‘boilng’ behavior emphasizes the necessity of considering vapor and heat transport in
the liquid in the bubble model. Overall, further analytical and experimental work is needed
to elucidate the role of thermal boundary layers for HIFU bubbles.

To date, chemistry has not been addressed in the energy balance enforced in the bubble
model proposed in this effort. Based on work from Didenko and Suslick,® it is reasonable
to expect that chemical reactions are not of primary importance to the energetics of violent
collapses. However, further examination of the chemical and physiological environment of
tissue may be of interest in the the context of cavitation and therapeutic ultrasound. In
particular, research on decompression sickness has suggested that surface-active substances
and metabolic effects likely play roles in the creation and stabilization of cavitation nuclei.?
Because the size and location of these nuclei will clearly affect any cavitation behavior
induced by SWL or HIFU, understanding and perhaps manipulating this chemistry may be

useful for controlling cavitation effects.
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Appendix A
CALCULATION OF FLUID PROPERTIES

In the succeeding sections, the equations used to calculate fluid properties are stated.

For convenience, a number of pertinent constants are cited in Table A.1 for use throughout.

Table A.1. Fluid Constants

Constant Value Units
Boltzmann constant (kz) 1.3806503 x 10~22 J/°K
universal gas constant (R) 8.314472 J/(mol°K)
Avogadro’s constant (N,) 6.02214179 x 10% 1/mol

from Wagner and Pruf3®®

critical pressure, water (P,) 22.064 MPa
critical volume, water (V) 55.95 x 1076 m?®/mol
critical temperature, water (7,) 647.096 °K
triple point, water (T,,.;) 273.16 °K
boiling point, water (T,;) 373.12 °K
from Poling et al.®

molecular weight, water (My,o) 18.015 g/mol
molecular weight, air (M,;,) 28.97 g/mol
hard-sphere diameter, water (dg,o) 2.641 x 107 m?
hard-sphere diameter, air (d,;,) 3.711 x 10-1° m?
second virial coefficient, water (b,,,) ITNAdY, o m?/mol
second virial coefficient, air (b,;, ) 2nNAd, m?/mol
Lennard-Jones parameter, water (&,/kz) 809.1 °K
Lennard-Jones parameter, air (e,/kz) 78.6 °K

A.1 Vapor Pressure of Water

The saturated vapor pressure of water varies as a function of temperature. In the context

of the present model, the vapor pressure is calculated from the liquid temperature T as
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follows: %°

(A1)

T + a7+ aym? 4+ a7 +asT + a67'7'5>

sa = PC
Dsat exp ( T.
where all temperatures are in units of °K and the calculated pressure is in Pa. The reduced

temperatures T, and 7 along with the constants a, are defined as follows:

T.=Z* a, = —7.85951783 | as = 22.6807411
7=1-1T, | a, =1.84408259 |a; = —15.9618719
as; = —11.7866497 | as = 1.80122502

This correlation for vapor pressure is valid anywhere on the vapor-liquid phase boundary,
from the triple point at 7),.,, to the critical point at T,. For any temperatures outside this

range, vapor transport is taken to be identically zero and p,.. need not be evaluated.

A.2 Latent Heat of Vaporization of Water

The latent heat associated with evaporation and/or condensation of water can be expressed

as the following function of temperature:*°
9 0.358
£ = 4400.74 [E(Tc - T)] (A.2)
where the liquid temperature T is in °K and L is in J/mol.

A.3 Density of Liquid Water

The density of water in the liquid phase is in general a function of temperature and pressure.
However, it is convenient to split these dependencies into an isothermal relation for density
(i.e., a form of the Tait equation) and an isobaric relation. The isothermal relation is used in
the Gilmore equation for the radial dynamics of the bubble and accounts for compressibility
effects near the bubble. In contrast,the isobaric relation is useful for calculating variations
in density at atmospheric pressure as the ambient temperature changes.

The isobaric relation is actually a formula developed to estimate density along the liquid-

vapor saturation curve. According to the international standard set forth by Wagner and
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PruB,?® saturation density can be calculated for temperature T as follows:

My,o
P=—

v (1 + 0,73 by by A3 4 p T b67'”°/3) (A.3)

T, = Tl b, = 1.99274064 by = —1.75493479
T=1-1T, | b, =1.09965342 bs = 45.5170352
b; = —0.510839303 | bs = —6.74694450 x 10°

The isothermal relation for density is based upon a Tait equation of state. By inverting

Equation (2.11), density as a function of pressure is expressed as®?

P = po [1 + == - po)] " (A4)

2.2
PoCo

Here the reference state defined by p, and p, can be estimated from the above relation for
density along the saturation curve. The Tait exponent I' = 6.5 is an empirically defined
constant, while the reference sound speed (¢;) at a given temperature completes the for-
mulation. From referenced data,®® this relation is valid across a range of pressures from
0.1-1180 MPa and is used as a liquid equation of state in the description of the radial

dynamics from Section 2.2.1.

A.4 Sound Speed in Liquid Water

For the Tait equation defined in the previous section, it is necessary to define an equilibrium
sound speed as a function of temperature. To this end, a correlation valid for liquid water

at 1 atm and for temperatures between 273 and 373°K is utilized:°*192

Co = Qy + a7 + @y + ay T + aym + agT’ (A.5)
T = T - Tm,elt
a, = 1.40238744 x 103 a; = 3.34638117 x 10~*
a; = 5.03836171 ay = —1.48259672 x 107°
a, = —b.81172916 x 1072 | a; = 3.16585020 x 10~°
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where the reference temperature 7' is in °K.

A.5 Surface Tension of Water

The surface tension of water is considered to be a function of temperature only. At high
pressures, surface tension may change; however, the makeup of the pressurizing gas and its
dissolution at the surface would have to be accounted for under these conditions, making any
estimation of surface tension very difficult. An alternate approach is to assume that surface
tension vanishes at supercritical temperatures that are consistent with high gas pressures
inside the bubble during collapse. Such an assumption is reasonable given that typical
measurements under pressurized conditions indicate a reduction in surface tension.'*® As a

function of temperature alone, the following correlation is used at temperatures less than

TC:104
T 1.256 T
=02 1— = 1-0.625(1— = A6
o = 0.2358 ( Tc) [ ( T)} (A.6)

where o has units of N/m.

A.6 Viscosity of Liquid Water

The viscosity of liquid water is typically calculated as a function of temperature and pressure.
From Kestin and Whitelaw,'*® a correlation is available for temperatures and pressures
within the respective ranges T,...; < T < 573.15°K and p... < p < 80 MPa, where p,,, is
the saturated vapor pressure at the liquid temperature T. For temperatures or pressures
outside of the prescribed range, an effective value at the range boundary is assumed. This

correlation may be written as
po=2.414(107°) 102478/(T=140) 1 4 1.04673(10™"") (p — pear)(T — 305)] (A7)

where the units of p are Pa-s. Note that the viscosity relative to the bubble is evaluated
at the liquid-gas interface, where the pressure p = p,, is related to the pressure inside the

bubble by Equation (2.29).
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A.7 Solubility of Air in Water

The dissolution of a gas in a liquid is governed by Henry’s law as defined by Equation (2.17).
From this definition, we seek to calculate the solubility of air in water as a function of
temperature. Variations in Henry’s constant with pressure are ignored. Based on the
correlated data of Eichelberger,! solubility at 20 MPa is overestimated by about 30%
when atmospheric pressure is assumed; the impact of such overestimation will be minimal
for a collapsing bubble since mass diffusion occurs on a much slower time scale than bubble

motion. The correlation presented by Battino et al.*°® can be expressed as

Pu

= A D .
101325 Mg exp(A+B/T+Clnt+ Dr) (A.8)

where p,, indicates the liquid density at the bubble wall in kg/m®, 7 = T,,/100 in units of

°K, and the units for H{ are mol/(m?Pa). The alphabetical constants are given by

A=-104208 B=137296 C =58.7394 D = —5.7669

This correlation is applicable for temperatures between T,,.; and T,,;; for temperatures
outside this range, the correlation is evaluated at an effective temperature taken to be the

boundary of the aforementioned range.

A.8 Thermal Conductivity of Liquid Water

Following Kestin and Whitelaw,'® we calculate the thermal conductivity of water as a
function of both temperature 7" and pressure p. The valid ranges for this correlation are
Ther < T, < 623°K and p,.; < p, < 50 MPa. As done for other properties, values
falling outside of this range are pinned at the range boundary before use in the correlation.
Considering a normalized tmeperature 7 = T'/7,,.;, and a pressure difference p' = p — p,o:

in units of bars, the correlation is

4 3 3
ky = Z a7 +p Z b, + (p')? Z et (A.9)
i=0 =0

1=0
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where &, is in units of W/m °K and the alphabetic constants are

ap = —0.92247 | by = —9.4730 x 107* | ¢, = 1.6563 x 10~°
a, = 2.8395 b, = 2.5186 x 10* | ¢; = —3.8929 x 10~5

a, = —1.8007 | b, = —2.0012 x 1073 | ¢, = 2.9323 x 10~ (A.10)
a; = 0.52577 by = 5.1536 x 10~* | ¢y = —7.1693 x 10-7
a, = —0.073440

Although an enhancement of thermal conductivity occurs near the critical region, the above

correlation will not capture such enhancement given the ranges of validity stated above.

A.9 Heat Capacity of Liquid Water

A correlation for heat capacity is available from the National Institute of Standards and

107

Technology.**” The correlation is in the form of a Shomate equation and is applicable over
a temperature range from 298-500°K as a standard. Here, we use the correlation from T,
to 500°K and evaluate the correlation at these limits for temperatures outside this range.

The Shomate equation for water is expressed as

EN 10
Cor = (A+BT+CT2+DT3+—5) M,OO (A.11)
T Hy0

where ¢, is in units of J/kg °K and the alphabetical constants are

A = —-203.6060 | C = —3196.413 | E = 3.855326
B =1523.290 | D = 2474.455

(A.12)

A.10 Diffusivity of Air in Liquid Water

The diffusivities of gases in liquids are generally correlated with the liquid viscosity. As
with viscosity, relevant methods for estimating diffusivities depend upon both temperature

and pressure. Here we use the following equation from Othmer and Thakar: %8

1.4 x 10-%
o 2AX1077 (A.13)

mut-tV, iroe
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where p is the viscosity evaluated by Equation (A.7) in units of centipoise. In addition, V,,
is the molar volume of air in cm?®/mol, which is taken to be 29.9 from Reid and Sherwood. 13
The above relation for diffusivity is an empirical correlation and is used here over a tem-
perature range from 283-363°K. Temperatures outside this range are accordingly pinned at

the limits of this range.

A.11 Diffusivity among Gas Species

As opposed to the diffusion of gases dissolved in liquids, diffusion among gas species also
occurs. At low densities, a diffusion coefficient for two ideal gases can be derived from
kinetic theory.®*®® While this approach accounts for the impact of temperature, it does
address changes in density of the gases. Because bubbles can achieve high gas pressures
and densities during collapse, it is of interest to address the impact of density. To this end,

a high-density correction based on Chapman-Enskog theory is used.

The low-density estimate can be expressed as

8ksT\'"? 3
P Al4
Do ( m ) 32 p,, N, d?Qp ( )

where kg is the Boltzmann constant, N, is Avogadro’s number, T is temperature in °K,
pm is the molar density of the entire gas mixture, and Q,, is a collision integral discussed
below. In addition, m and d represent averaged properties of molecular mass and diameter

and are calculated as

A{Hgoﬂfair 1
My,0 + My, Na

1
d = 5 (dair + ngO)

The high-density correction can then be calculated as

’
— (‘Dl2

D,2
Y,

(A.15)
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where Y;, is is estimated from the molar vapor fraction f, as

2 3 du,o0 + 4d,r 2 3 4dy,o + dair
1.2 Gryo + 4air | | 2 1— £y, 240 T dair ) (p g
Y'12 1 + 3pmNAfvdH20 <4dH20 + 4daz’r) + 3pmNA( f’l)daw 4dH20 + 4dair ( 6)

A.12 Thermal Conductivity of an Air-Water Vapor Mixture

To estimate the thermal conductivity of an air-vapor mixture, we follow several references
to account for variations with both temperature (T) and density (p,,). First, we follow

Yasui'® and define low-density conductivities as linear functions of temperature:

|

k. = 0wl + B where ;. = 5.39 x 10~%, 3,,, = 0.0108

k! = Qyapd + Buap where a,q, = 9.98 X 107°, B,,, = —0.0119

vap

In these relations, T is in °K and the low-density thermal conductivities (k') have units of
W /m °K. Using a quadratic mixing rule® and considering a mixture with a mole fraction

of vapor f,, the low-density conductivity of the mixture is

By = [forf Moy + (1= OVE ] (A17)

Adjustment for high density concentrations is formulated in terms of the second virial

coefficient b of the gas mixture.'®® Using a mixing rule from Poling et al.,*® we have

b= bair(l - fv)2 + 2bav(1 - fv)fv + bvapf: (A]'S)

where b,, = §7TN ,d® and d is defined in the previous section. Using this relation for
the second virial coefficient, the thermal conductivity k, is calculated from the following

equations:

y = bp,+0.625(bp,,)* + 0.2869(bp,,)* + 0.115(bp,,)*

k, = k. [bpm(1/y+1.2+0.755 y)]

where p,, is the molar density of the mixture.
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A.13 Heat Capacity of Air-Water Vapor Mixture

The heat capacity at constant volume of a gas can be derived from the kinetic theory of
ideal gases.®® Moreover, the heat capacity of a mixture can calculated as a mole-fraction
average of the values for each type of gas. For polyatomic gases, kinetic theory implies that
the specific heat is proportional to the universal gas constant R. Including translational
and vibrational energies of polyatomic molecules, the specific heat can be written in terms

of temperature T as

2 Gm/T
¢, =R A+Z 6/ T) (A.19)

607",/T —_— 1

where A = 5/2 for linear molecules or A = 3 for nonlinear molecules and 6, represents
temperatures associated with one or more vibrational modes. Here, we consider an air-vapor
mixture so that the molecular properties of oxygen, nitrogen, and water are considered.
As linear molecules, nitrogen and oxygen have a single vibrational mode; as a nonlinear
molecule, water possesses three modes. The pertinent vibrational temperatures are provided

below:
0. (°K)

nitrogen | 3393
oxygen | 2273
water 2295 5255 5400

Moreover, considering a vapor fraction f, and air as 78.5% nitrogen and 21.5% oxygen, the

specific heat (c,) of the mixture is calculated as a weighted average of the ¢/ as calculated

with the above formula. In additioan , we recognize that for an ideal gas, ¢, = ¢, + R.
R

Hence, the ratio of specific heats can be written as vy =2 =1+ %

Cyp Cy

A.14 Diffusion Collision Integral

A diffusion collision integral 2, based on Lennard-Jones potentials is used above in Sec-
tion A.11 for the diffusivity among gas species. This integral is approximated with the

following expression: %

A C E G
QD=_+ +

TB eDr eFr eHr

(A.20)
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where 7 is a normalized temperature. The temperature T is normalized by the molecular

property €,/kys such that
kT

€o

T =

Here, kjp is the Boltzmann constant while €, represents a minimum energy of attraction. '
While €,/k5 is tabulated for specific gases, the corresponding value for a two-component

mixture can be calculated as

eo/ks = [(en/ks) (e /ks)]""
Lastly, the alphabetic constants from Equation (A.20) are

A =1.06036 | D =0.47635 | G = 1.76474
B =0.15610 | E = 1.03587 | H = 3.89411
C =0.19300 | F = 1.52996
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Appendix B
MEASUREMENTS OF INDIVIDUAL SHOCK WAVES

The material included in this appendix was submitted to The Journal of the Acous-
tical Society of America in January 2008 for publication.®” At present, the manuscript
remains under review. The title was ‘Beamwidth measurement of individual lithotripter
shock waves,” while the authors were listed as Wayne Kreider, Michael R. Bailey, and Jef-
frey A. Ketterling. The manuscript comprised the contents of this appendix in addition to

an abstract and acknowledgments.

B.1 Introduction

Shock wave lithotripsy (SWL) is the most common treatment for uncomplicated renal
stones.*! Several recent studies have reported that when compared to outcomes with the
original Dornier HM3 electrohydraulic lithotripter, new lithotripters have lower stone-free
rates, increased re-treatment rates, and increased severity and frequency of trauma to sur-
rounding tissue."**'® The differences in clinical outcomes may relate to the method of
acoustic coupling to the patient (newer machines utilize a water filled pillow while the HM3
utilizes a water bath).®* However, it is generally accepted that the tigher focal geometries
and higher peak pressures of the newer machines have had great impact on clinical out-
comes. More specifically, tissue injury is known to correlate with peak pressure, while the
efficacy of targeting stones is likely reduced for shock waves with narrower focal regions. ¢
Moreover, experiments have also found that lithotripters with focal regions that are wide
relative to the stone (e.g., the HM3) produce more effective stone fragmentation. The util-
ity of a broad focal beamwidth lies in the ability of a shock wave traveling along the stone
perimeter to generate shear waves within the stone.*”''° In response to clinical outcomes
and experimental results, many manufacturers have released new lithotripters specifically

marketed as ‘broad-focus.’
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The inherent shock-to-shock variability of the acoustic field in spark-source, electro-
hydraulic lithoptripters makes it very difficult to characterize instantaneous beamwidths.
Typically, beamwidths are estimated from the sequential acquisition of point measurements
within the focal plane using single-element hydrophones. However, shock waves change
significantly due to variations in spark energy and in location of the spark between the
electrodes.'® These variabilities can alter the waveform shape in terms of rise time and
pulse width. Moreover, the location of the focal region may shift. Accordingly, the com-
bination of single-element hydrophone measurements from a series of different shock waves
may yield broader estimates of beamwidth than are actually present. Given the clinical
motivation described above for knowing the shock-wave beamwidth in lithotripsy, improved
measurement tools are needed.

In this work, a linear array hydrophone was constructed and used to make instantaneous
beamwidth measurements of individual lithotripter shock waves. Measurements were made
with broad- and narrow-focus electrohydraulic lithotripters as well as with new and worn
electrodes at different charging potentials. The different conditions tested were designed to

ensure variability in both focal beamwidths and peak pressures.

B.2 DMethods

B.2.1 Hydrophone Array

The linear hydrophone array utilized in these studies was fabricated using a technique
described by Ketterling et al.’>* The array consisted of a 9 um polyvinylidene fluoride
(PVDF) membrane with one side electroded with gold (Ktech Corp., Albuquerque, NM)
and the other bonded to a copper-clad polyimide (CCP) film (RFlex 1000L810, Rogers
Corp., Chandler, AZ) using a thin layer of non-conductive epoxy. The epoxy layer typically
remains about 1 um thick after curing. The actual array pattern was etched onto the CCP
using standard printed circuit board techniques. Electrical trace lines linking each element
to a connection pad were also etched onto the CCP and the trace pads were spaced to fit
into a standard zero-insertion force (ZIF') flex connector. During the bonding process, the

films were clamped between two aluminum plates. After the bonding epoxy cured, a Teflon
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mold of 15 mm depth was attached to the back of the membranes and filled with additional
epoxy. The operating characteristics (e.g., center frequency, bandwidth, etc.) of a device

similar to the linear array are described by Ketterling et al.

The electrical and mechanical characteristics of the linear array were designed to span a
distance greater than the —6 dB beamwidth of the HM3 geometry with a sufficient number
of elements to resolve spatial variation in the focal beam. Moreover, the surface area of
each element was chosen to be sufficiently high for impedance matching considerations.
The final assembled linear array consisted of 20 elements, each 4 mm long by 0.5 mm wide,
as illustrated in Fig. B.1. The center-to-center element spacing was 0.9 mm for a total array
width of 17.6 mm. A custom printed circuit board linked the ZIF connector to 20 BNC
connectors. The 20 elements were connected to the inputs of six digital oscilloscopes via

BNC cables with no preamplification.

Given the design details described above, it is instructive to consider expected opera-
tional characteristics of the hydrophone array. Since the bandwidth of PVDF is greater
than 70 MHz, shock fronts with rise times of at least 14 ns can theoretically be resolved.
However, angular misalignment of the array with the shock front will effectively average
the shock over the element surface and increase its apparent rise time. For example, a 5
degree inclination of the 4 mm long elements would lead to an apparent 200-ns rise time
for a planar shock wave. In addition, averaging across the 0.5 mm width of each element
will occur due to misalignment as well as spatial variability across the beamwidth of the
shock wave. Such transverse averaging should remain relatively small since the width of
each element is much less than its length and is only about 3% of the —6 dB beamwidth

for the HM3 reflector geometry.*?

B.2.2 SWL Measurements

Measurements were made in degassed water with the hydrophone array placed at the focus of
the APL-UW research lithotripter modeled after the Dornier HM3.%? The array was oriented
at the focus such that the 4x0.5 mm area of each element was approximately perpendicular

to the axis of propagation of the shock wave. Moreover, the array was centered such that
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Figure B.1. Schematic of the hydrophone array in (a) plan view and (b) elevation view. Note that
only the array elements are strictly drawn to scale. The array consisted of 20 PVDF elements that
were 0.5 mm by 4 mm, with a center-to-center element spacing of 0.9 mm.

the middle elements were aligned at the geometric focus of the lithotripter. A charging
potential of 15, 18, or 23 kV was used to trigger single shock waves at a rate slower than
one per minute. Two ellipsoidal reflectors were used: an HM3-style reflector (semimajor
and semiminor axes: a = 13.80 cm, b = 7.75 cm) and a reflector insert that fit inside the
HM3-style reflector (a = 9.30, b = 6.24). Both reflectors were axisymmetric in that they did
not possess cutouts to accommodate fluoroscopy that typically exist in clinical lithotripters.
The reflector insert was designed to create a tighter focus, as illustrated in Fig. B.2. New
electrodes (< 200 shock waves) and worn electrodes at the end of their prescribed clinical

lifetime (> 2000 shock waves) were used. Worn electrodes possessed larger spark gaps and
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HM3-style reflector surface

“~._ (broad-beam geometry)
‘ bolting of reflector insert
S g <~ to mounting flange
e : * B

N\
\__ surface of reflector insert
(narrow-beam geometry)

F2
(reflector insert)  (HM3-style reflector)

/ spark source (F1)

Figure B.2. Scaled drawing of the lithotripter geometries tested. The ellipsoidal reflectors possess
two foci, where F'1 denotes the focus corresponding to the spark source and F2 denotes the remote
focus corresponding to the treatment site and the central location at which beamwidth measurements
were acquired.

exhibited damage caused by arcing along a broad portion of their surface. As mentioned

above, testing with both new and worn electrodes ensured variability in the focal pressures.

Voltage measurements from the array elements were captured on six digital oscillo-
scopes with sampling rates of at least 50 MHz. Measurements were collected using an input
impedance of 1 M} on the oscilloscopes and no preamplification. A custom LabVIEW
program (National Instruments, Austin, TX) was used to digitally store select waveforms.
Oscilloscope measurements corresponding to peak positive pressures of the focal wave were
manually recorded for all array elements. For select shock waves, oscilloscope settings were
adjusted to resolve the peaks corresponding to the direct wave (i.e., the spherically diverging

wave generated by the spark that precedes the focal wave).

Measurements were analyzed in two steps. First, given that the direct wave diverges
spherically from the spark at one focus of the ellipsoidal reflector, the relative amplitude of
the direct wave as experienced by each array element was calculated from geometric consid-
erations. Considering that the array width was 17.6 mm and the distance from the spark
to the nearest measurement location was 138 mm, the amplitude of the direct wave varied

across the width of the array by no more than 0.2%. Next, the direct-wave measurements



162

y T T y T T

N .ﬁfocus_edw,ave,f\ o

- ——directwave ||

Volts

-10 0 10 20 30 40 50 60
Time (us)

Figure B.3. Measured direct and focal shock waves from a single array element.

were used to normalize measurements of the focal wave on an element-by-element basis.
In this manner, variations in the sensitivity of each element were accounted for, thereby
enabling quantitative measurement of the relative pressure amplitude of individual shock
waves across the focal width of the lithotripter. Although not measured explicitly in this
effort, absolute pressures for the Dornier HM3 reflector have been measured previously.
For this geometry, the maximum peak positive amplitudes have been reported to be about
1 MPa for the direct wave and 29.9£4.7 MPa for the focused wave.®** The ratio of these re-
ported amplitudes can be directly compared to the data presented below for the HM3-style

reflector.
B.3 Results

An example of a waveform measured on a single element of the array hydrophone while
using the HM3-style reflector and new electrode is shown in Fig. B.3. The sensitivity of
the hydrophone array was sufficient to reveal the direct wave seen at t = 0 as well as the
focused wave at t ~ 30 us. The measured focal waveforms show a peak positive spike of
about 1 us duration followed by a negative trough of about 4 us, which is the commonly
described classic lithotripter waveform.%%!?° The shock front was slightly rounded and not
strongly shocked. As discussed above, misalignment of the array such that the elements are
not perpendicar to the acoustic axis and parallel to the shock front is a likely explanation

for the slow rise times observed.
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Figure B.4. Normalized element sensitivities. The thick line indicates the element-by-element
mean of measurements from 6 shock waves, while the vertical bars indicate +1 standard deviation
at each element.

In order to resolve the direct waveforms across the array elements, alternate oscilloscope
settings were used to acquire data at 18 and 23 kV charging potentials for the HM3-style
reflector and at 15 and 18 kV for the reflector insert. While element sensitivities were con-
sistent for measurements from both reflector geometries, one element appeared to become
damaged during acquisition of direct-wave measurements with the reflector insert. Accord-
ingly, direct-wave measurements with the HM3-style reflector were normalized relative to
the most sensitive element for each shock wave. These normalized responses for six sepa-
rate shock waves were then averaged. As illustrated in Fig. B.4, element sensitivities tended
to decrease across the width of the array. Possible explanations for this behavior include
different cabling impedances among elements and/or other variables in the fabrication pro-
cess. Because only a single prototype of the array was constructed, issues of fabrication

consistency were not investigated in this effort.

After correcting for individual element sensitivities as described above, the beam pro-
files of individual shock waves are presented in Fig. B.5. Because all measurements are
normalized relative to the direct wave from the HM3-style reflector at 18 kV, the plotted
amplitudes can be directly compared. As shown, measured profiles are sorted based on the
test conditions used to generate shock waves. Focused beams were produced using four

distinct combinations of either the HM3-style or the insert reflector, a charging potential of
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18 kV or 23 kV, and new or worn electrodes. In Fig. B.5(a), the —6 dB beamwidth of the
profile corresponding to the thickest line is explicitly marked and labeled. Note that the
array element at a transverse position of —0.45 mm (as labeled by the dashed circle) consis-
tently measured lower pressures than its neighbors in all profiles. Accordingly, this element
was ignored in the estimation of beamwidths. Since it is possible that damage or bubbles
could transiently alter element sensitivity, the lower reading might have been corrected if
each element were normalized to the simultaneously measured direct wave rather than the
profile displayed in Fig. B.4. However, simultaneous measurement of the direct and focal
waves would require oscilloscopes capable of capturing longer time traces and resolving a
larger dynamic range.

Each of the profiles plotted in Fig. B.5 was used to estimate the —6 dB beamwidth
and the transverse location of the peak pressure. These data for independently measured
shock waves are provided in Table B.1, in which ‘Range’ denotes the extent of the range
of measurements as the difference between the maximum and minimum values. Comparing
the four separate groups of shock-wave measurements, several key differences are apparent.
First, from test conditions (a) and (b), the insert reflector produced narrower beamwidths,
higher peak pressures, and a more consistent localization of the peak pressure than did the
HM3-style reflector. In Table B.1, the range of zero for peak pressure locations indicates
that the peak was measured at the same element for all shock waves. Moreover, despite
measuring a low number of shock waves, the beamwidths measured for conditions (a) and
(b) are statistically different at a 95% confidence level (p ~ 0.04). Considering conditions
(b), (c), and (d) for the HM3-style reflector, worn electrodes altered the shape of the beam
profiles and generated slightly higher peak pressures than new electrodes at a charging
potential of 18 kV.

At a charging potential of 23 kV with new electrodes, the HM3-style reflector tended to
produce higher peak pressures than at 18 kV, as expected. However, shock waves generated
at 23 kV also exhibited much greater variability as indicated by the plotted profiles as well
as by the reported 14.4 mm range for peak pressure locations. Assuming that the mea-
sured locations of peak pressure are normally distributed, the variances of the distributions

corresponding to conditions (b) and (d) are different with a statistical confidence level of
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Figure B.5. Beam profiles measured for individnal shock waves. Shock waves were generated using
(a) the reflector insert, a charging potential of 18 kV, and new electrodes [3 shock waves]; (b) the
HM3-style reflector, 18 kV, and new electrodes [4 shock waves]; (c) the HM3-style reflector, 18 kV,
and worn electrodes [4 shock waves]; and (d) the HM3-style reflector, 23 kV, and new electrodes
[5 shock waves]. Note that direct-wave measurements at 18 kV were used for all normalizations,
thereby allowing direct comparison of the amplitudes in all plots. The —6 dB beamwidth of the
thickest-line profile is marked in (a).
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Table B.1. Measurements from individual shock waves.

Beamwidth Peak Location
(mm) (mm)
Conditions Mean Range* Range”

(a) Insert reflector
18 kV, new electrodes 8.1 6.3 0.0
[3 shock waves]

{b) HM3-style reflector
18 kV, new electrodes 13.1 2.6 5.4
[4 shock waves]

{c) HM3-style reflector
18 kV, worn electrodes 11.9 4.5 5.4
[4 shock waves]

(d) HM3-style reflector
23 kV, new electrodes 12.4 6.9 14.4
[5 shock waves]

* Denotes the extent of the range of observed measurements as given
by the mazimum value minus the minimum.

89%. This result again demonstrates that the array can be used to discern system variabil-
ity based on only a few shock wave measurements. In this case, higher charging potential
affected the repeatability of the location of peak pressure.

In addition to the above comparisons among test conditions used in this effort, measure-
ments with the HM3-style reflector can also be compared to data derived from single-point
hydrophone measurements. The —6 dB beamwidth of the HM3-style reflector was pre-
viously reported to be about 14 mm.**!?° Under all conditions tested in this effort, the
beamwidths were 1-2 mm less than the previously reported value for the HM3-style reflec-
tor. Although this discrepancy may not be statistically significant, these observations are
consistent with the expectation that averaging of single-point measurements from multiple
shock waves leads to an overestimation of beamwidth. Aside from beamwidth, Cleveland
et al.®? used a single-point hydrophone to measure peak positive pressures of 29.9+£4.7 MPa
at 18 kV for the device used in this effort. Assuming a direct-wave amplitude of 1 MPa as
mentioned in Section B.2.2, the expected range of normalized peak pressures from 25-35 is

confirmed by the profiles in Fig. B.5(b).

The primary focus of this effort was to explore the use of a novel hydrophone array for
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Figure B.6. Radius-time curves showing representative bubble behaviors when excited by shock
waves corresponding to (a) the HM3-style reflector and (b) the reflector insert.

single-shot measurements of lithotripter shock waves. One particular use of this array in
lithotripsy research is to enable quick and accurate comparisons of the beamwidths produced
by various reflector geometries. In acquiring such measurements for the HM3-style and
insert reflectors in this effort, a noteworthy observation was made regarding the behavior
of cavitation bubbles. To document this observation, high-speed photographs of bubbles
excited by shock waves from both reflector geometries were captured. Radius-time curves
for a typical bubble corresponding to each reflector were generated from the photographs!??
and are presented in Fig. B.6. For both reflectors, the bubbles go through a prolonged
growth and collapse phase that lasts hundreds of microseconds after the focal shock wave
has passed. Considering shock-wave arrival at ¢ = 0, both radius-time curves possess a point
of inflection at about ¢ = 130 us. Because such inflection points are typical, the consistent
presence of a secondary expansion wave can be inferred.

While the radius-time curves corresponding to each reflector are qualitatively similar, it
appears that the secondary expansion wave was considerably stronger for the more highly fo-
cused reflector. The secondary bubble growth starting at about 130 us was more prominent
and the overall collapse time was nearly a hundred microseconds longer with the narrow-
beamwidth reflector. Although the origin of the secondary waves has not been explicitly

investigated, such waves may arise from the excitation of elastic waves in the reflectors. Ul-
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timately, the observed difference in bubble behavior highlights the potential for unintended
consequences when explicitly attempting to manipulate the acoustic field through the re-
flector geometry. Because both beamwidth and cavitation dynamics are affected, caution
should be exercised when comparing the relative bioeffects induced by different reflector

geometries.
B.4 Discussion and Conclusions

The linear hydrophone array proved to be a useful tool for quickly and accurately measuring
the beamwidths of focused shock waves. The measurements presented above represent the
first simultaneous acoustic field measurements in an electrohydraulic lithotripter. Previous
measurements consisted of point measurements at a single spatial location for each shock
wave. Using 20 elements, the beam profiles measured with the array were relatively smooth.
Although some variabilities persisted after compensation for the sensitivities of individual
elements, the instantaneous measurements did enable at least a qualitative distinction of
the acoustic fields generated under different test conditions. Notably, the beamwidths of
the HM3-style and the insert reflectors were determined to be statistically different after
acquiring measurements from only a few shock waves.

While spark jitter did not strongly affect the observed focal locations for either reflector
geometry at a charging potential of 18 kV, considerably more scatter in the focal locations
was found at 23 kV for the HM3-style reflector. The good repeatability is consistent with
previous measurements using the fountain produced by the shock wave on this lithotripter
at 18 kV.12 The focal-zone variability at 23 kV is qualitatively consistent with high-speed
camera images of cavitation clouds in other electrohydraulic lithotripters.®® Beyond the ex-
plicit effects of spark jitter, shock-wave propagation through tissue inhomogeneities and/or
cavitation clouds may affect the ultimate location of the focal region under clinical condi-
tions. Scattering associated with such random variations in the propagation path has been
demonstrated to reduce the amplitudes of portions of the focal waveforms.'*?+'?* However,
it is not known if the scattered energy is refocused elsewhere in the tissue. Given such
persistent questions regarding the spatial characteristics of lithotripter shock waves, hy-

drophone arrays promise to be a useful tool for instantaneous measurement of focal location
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and beamwidth.

The prototype hydrophone array designed and fabricated in this effort proved fairly
consistent and robust. Although not mechanistically explained, the element sensitivities
reported in Fig. B.4 were repeatably observed. One apparent inconsistency in the measure-
ments was the questionably low readings yielded by the element at —0.45 mm (even after
applying the sensitivity correction). With regard to robustness, another element stopped
functioning after approximately 100 shock waves. The damage is presumed to have been
caused by cavitation. In addition, it is speculated that the aforementioned inconsistency and
perhaps other measurement variabilities were caused by the collection of cavitation bubbles
on the hydrophone’s surface. Modifications of the array to include a protective coating or
immersion in oil might be useful to improve the consistency and robustness of the device.
As a final comment on array design, the fabrication technique allows adjustment of the
number of elements, the element size, and the element spacing for optimal performance in

a given lithotripter.
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